Archives de catégorie Informations sur l'industrie

Waste heat recovery plate heat exchanger for grain drying

Grain drying is an important step in ensuring safe storage and reducing losses, and the drying heat exchanger plays a crucial role in this process. The grain drying heat exchanger can quickly complete the grain drying process and improve production efficiency through an efficient heat transfer mechanism. Meanwhile, adopting waste heat recovery technology can significantly reduce energy consumption, lower production costs, and reduce carbon emissions, which contributes to environmental protection.
structure type
Tube and tube heat exchanger: Tube and tube heat exchangers, also known as shell and tube heat exchangers, have a simple structure, low manufacturing difficulty, and are easy to clean and maintain. During the process of grain drying, high-temperature flue gas generated by burning coal or other fuels is used as the heat medium.
Plate heat exchanger: Plate heat exchangers are widely used in grain drying due to their simple structure and low manufacturing cost.
working principle
Waste heat recovery: During the drying process of grain, a large amount of heat is generated. The waste heat recovery system improves energy efficiency by collecting this waste heat and transferring it to new dry air.
Preheating air: Some advanced grain drying systems utilize waste heat recovery technology to preheat fresh air, further improving drying efficiency.
Application scope
Plate heat exchangers are suitable for various sizes and types of grain drying equipment, whether it is corn drying towers in large grain storage and logistics centers or grain dryers in small farms.

Plate heat exchanger for waste heat recovery in textile heat setting

During the heat setting process of textiles, a large amount of waste heat energy is usually generated. In order to effectively utilize this waste heat energy, a plate aluminum foil heat exchanger can be used for recycling.
The working principle is as follows:
Plate heat exchanger is an efficient heat exchange device commonly used to transfer heat between two fluids. In the textile heat setting machine, the plate heat exchanger can be placed at the hot air discharge port or flue gas discharge port of the heat setting machine. During the process of contact with the plate, the hot air or flue gas transfers heat to the recovery medium. After absorbing the residual heat energy from hot air or flue gas, the recycling medium can be used to heat water or other fluids for preheating, heating, or other thermal energy requirements in the textile process.
By using plate heat exchangers, textile heat setting machines can recover the waste heat energy from the discharged hot air or flue gas, reduce energy consumption, and improve energy utilization efficiency. This helps to reduce production costs, minimize environmental pollution, and contribute to the sustainable development of the textile industry.

Waste heat recovery core for granulation and drying of gas boilers

working principle:
Gas boiler granulation and drying waste heat recovery core achieves efficient heat exchange through gas-liquid phase change circulation of working liquid in a closed pipeline. The exhaust gas and fresh air (or air that needs to be heated) exchange heat through the heat exchange core of the plate heat exchanger, and the heat in the exhaust gas is transferred to the fresh air through the heat exchange core, causing the temperature of the fresh air to rise.
Application areas:
This system is widely used in industries such as ceramics, fertilizers, chemicals, feed, water purifiers, and building materials, and is suitable for situations that require high-temperature combustion air or process gases. For example, by using a waste heat recovery system to recover the high-temperature flue gas waste heat discharged from the circular cooler, the energy utilization efficiency of the production process can be improved and energy consumption can be reduced.
In summary, the waste heat recovery core of gas boiler granulation and drying achieves the recovery and reuse of exhaust gas waste heat through an efficient heat transfer mechanism, reducing production costs, improving energy utilization efficiency, and reducing environmental pollution. We can tailor the most suitable waste heat recovery solution based on specific production site conditions and your needs.

Échangeur de chaleur à plaques pour la récupération de la chaleur perdue des gaz d'échappement de peinture et de peinture par pulvérisation

working principle:
The waste heat recovery heat exchanger for painting and baking room exhaust gas is a device that exchanges energy between air and air through a heat-conducting plate, and uses the energy of exhaust air to pretreat fresh air, thereby achieving the purpose of energy recovery. The fresh air and exhaust air are completely separated by a heat-conducting plate to avoid cross contamination and ensure the cleanliness of the fresh air.
Product Introduction:
Our waste heat recovery heat exchanger is a cross flow plate type heat exchange core, made of hydrophilic aluminum foil, oxygen resin aluminum foil, stainless steel and other materials, with a heat transfer efficiency of over 95%. It can achieve efficient heat recovery without changing the existing coating production process. This device not only significantly improves energy efficiency, but also effectively reduces exhaust emissions, making your production process more environmentally friendly and efficient.
Core advantages
Efficient and energy-saving: Our gas air plate heat exchanger adopts composite phase change heat transfer technology, with a heat transfer efficiency of over 95%. It can achieve efficient heat recovery without changing the existing coating production process.
Environmental protection and emission reduction: By recovering the heat energy from exhaust gas and using it for fresh air preheating, the direct emission of exhaust gas is greatly reduced, reducing the environmental burden.
Intelligent operation: The system runs fully automatically without the need for manual supervision, ensuring safety and reliability, greatly reducing manual maintenance costs.
Flexible customization: Tailored the most suitable waste heat recovery solution according to the conditions of different production sites, with flexible and convenient installation.
Reduce costs: significantly reduce production costs caused by energy consumption, have a short investment return period, and rapidly enhance the market competitiveness of enterprises.

Widely used in automobile manufacturing, furniture baking paint, machine baking paint, high-temperature baking paint and other fields. Whether you are engaged in mass production or precision operations, gas air plate heat exchangers can provide you with customized energy-saving solutions.

serpentins de chauffage à vapeur

  • Caractéristiques structurelles
  • Il adopte un manchon de tube en acier inoxydable et une structure d'ailette en aluminium, et il est en contact étroit avec le tube en acier via un tube d'expansion hydraulique, ce qui a un meilleur effet de transfert de chaleur. Fabriqué en tube d'acier inoxydable de haute qualité, haute conductivité thermique et forte résistance à la corrosion. Conception de tube professionnelle, faible résistance, transfert de chaleur plus élevé. Sélection de logiciels professionnels pour répondre aux besoins des différents utilisateurs
  • État de fonctionnementPression de vapeur ≤ 0,5 MPa, température d'alimentation en air jusqu'à 150 degrés ; Lors de la sélection du produit, choisissez la plage de vitesse du vent de fonctionnement économique (1,5 m/s-3,5 m/s) De cette façon, il peut obtenir de bons résultats de fonctionnement économiques. La taille maximale d'une seule taille peut être de 5 000 mm x 2 500 mm, qui peut être assemblée lorsque cette taille est dépassée.
  • Application
  • Système de ventilation et de climatisation.
  • Système de séchage des aliments et des médicaments.
  • Système d'échange de chaleur pétrochimique.
  • Endroit résistant à la corrosion

Échangeur de chaleur à plaques à flux croisés

QQ20241015-153001.png

Introduction: The heat exchange core is a cross flow heat exchange core, in which two streams of air with different temperatures flow in a positive cross flow, and heat exchange occurs between the two fluids, with their channels completely separated.

Cross flow plate heat exchangers can be applied to air handling units as the main component of heat recovery. Cross flow plate heat exchangers can also be applied to ventilation systems, installed in air ducts as the main component of the heat recovery section, and their installation positions can be flexibly switched.

Cross flow plate heat exchangers

Application scenarios: Waste heat recovery solutions for coating machines, laminating machines, etc., heat recovery solutions for drying vegetables, nuts, shrimp skin, and dried fish, waste heat recovery for paint baking rooms, energy-saving technologies for waste heat recovery of exhaust gases such as boiler and factory electricity.

The module structure can provide any size and stacking height combination to meet various airflow and scene applications.

Material: According to the on-site working conditions, various materials are available for selection, such as hydrophilic aluminum foil, epoxy resin aluminum foil, stainless steel, etc.

Cross flow plate heat exchangers

Biopharmaceutical waste heat recovery heat exchanger

The application principle of waste heat recovery equipment in biopharmaceutical enterprises is mainly to transfer the thermal energy in the pharmaceutical factory exhaust gas to the working medium through a heat exchanger, so as to raise its temperature, and then convert this thermal energy into useful energy, such as preheating air, hot water, steam, etc., to avoid energy waste and reduce exhaust gas emissions while protecting the environment.

Advantages of biopharmaceutical waste heat recovery heat exchanger:

Efficient heat transfer

Energy conservation and environmental protection

Easy to maintain

Customizable design

The use of plate heat exchangers for dehumidification and waste heat recovery in the process of biopharmaceutical waste heat recovery can effectively reduce energy consumption, improve efficiency, extend equipment service life, and help meet environmental requirements.

Coating machine, heating shaping machine, tunnel furnace exhaust gas heat recovery device

A coating machine is a mechanical device used to evenly apply specific functional adhesives, coatings, inks, etc. onto the surface of a substrate and dry it, with a wide range of applications. For example, printing and packaging coating, textile and building materials anti-corrosion and waterproof coating, automotive sheet metal coating, optical coating for circuit boards, semiconductors, and lithium battery production coating.
The coating process of a coating machine mainly includes three steps: coating, drying, and winding. The drying process generates a large amount of waste heat during the heating process. Therefore, designing an effective waste heat recovery device can effectively reduce the energy consumption of the coating machine, which is important for its energy conservation and environmental protection.
Principle of residual heat recovery of coating machine
The waste heat recovery device of the coating machine uses a heat exchanger to recover waste heat. Using the waste heat gas emitted by the coating machine (coating machine) to preheat the new air, the preheated new air enters the oven through the pipeline, achieving the goal of energy conservation. The heat exchanger achieves waste heat recovery by exchanging heat between the hot air and flue gas generated during the drying process of the coating machine and the recovery medium (such as air, water, or other fluids). Hot air and flue gas flow through the heat exchanger through one side channel, while the recovery medium flows through the other side channel. The plate structure of the heat exchanger increases the surface area for heat transfer and improves the efficiency of heat recovery.
Advantages of Coating Machine Waste Heat Recovery Device
Compact structure, high heat transfer efficiency, and strong adaptability. They are suitable for heat transfer and energy recovery in high temperature, high humidity, and corrosive environments. Through a well-designed waste heat recovery system, lithium battery coating machines can operate more efficiently and reduce their impact on the environment.

Wood drying waste heat recovery plate heat exchanger

In the conventional drying process of wood, the traditional ventilation method results in significant heat loss due to the removal of moisture and exhaust gas. The forced ventilation and waste heat recovery system in the wood drying room is a new technology that improves the indoor and outdoor dry wet air exchange process in drying production and effectively recovers waste heat.
The counterflow plate heat exchanger adopts high-quality hydrophilic coated aluminum foil, epoxy resin coated aluminum foil and other materials. The two air streams enter the channel in reverse, increasing the heat transfer area. The fresh air and exhaust air are completely separated to avoid the transmission of odors and moisture. Fast thermal conductivity, no secondary pollution, achieving ventilation and heat recovery functions.

Plate heat exchanger, heat pump, drying heat exchanger, industrial fresh air fan, heat recovery equipment

Product Introduction:
Plate heat exchanger is a detachable energy recovery heat exchange device composed of multiple corrugated heat transfer plates. The heat exchange core is made of hydrophilic aluminum foil, oxygen resin aluminum foil, stainless steel and other materials. The air flows in a cross flow manner, and the fresh exhaust is completely separated to avoid the transmission of any odor and moisture.

Product features:

  1. Using hydrophilic coated aluminum foil as the heat transfer conductor, processed by special technology, it has the characteristics of high heat transfer efficiency, easy maintenance, and long service life.
  2. Epoxy resin aluminum foil can be used, which is corrosion-resistant and suitable for special occasions.
  3. Multiple specifications, sizes, and spacing (3-12mm) are available for selection.
  4. Modular structure, capable of providing combinations of cross-sections of any size and plate stacking thickness, with no moving parts and low equipment maintenance costs.
  5. Compact structure, small volume, suitable for various occasions.
  6. Flexible assembly: The combination form of plate heat exchangers can be reasonably selected according to the size of the usage and installation site space, as well as the operating conditions.

Application areas:
Widely used in ventilation, energy recovery, cooling, heating, dehumidification, and waste heat recovery industries such as HVAC, telecommunications, power, textile, automotive, food, medical, agriculture, animal husbandry, baking, drying, welding, and boilers.
Heat pump system: Plate heat exchangers are widely used in air source heat pump systems, suitable for household and small commercial projects.
Industrial sector: Suitable for large-scale heat exchange in industrial production, such as chemical, food processing, energy and power industries.
Ground source heat pump system: suitable for ground source heat pump systems, with high heat transfer efficiency.
Seawater desalination: suitable for seawater desalination process, corrosion-resistant and high-temperature resistant.

Besoin d'aide?
fr_BEFrançais de Belgique