Tag Archive waste heat recovery

Waste Heat Recovery Systems for Industrial Dryers

Waste heat recovery systems for industrial dryers capture and reuse thermal energy from hot exhaust gases or air streams to improve energy efficiency, reduce operating costs, and lower emissions. These systems are valuable for energy-intensive drying processes in industries like chemical, food, ceramics, and textiles. Below, I outline key technologies, benefits, and U.S.-based suppliers with contact information.

Key Technologies for Waste Heat Recovery in Industrial Dryers
Industrial dryers produce hot, moist exhaust air containing sensible and latent heat. Recovery systems extract this heat for reuse. Common technologies include:

Air-to-Air Heat Exchangers:
Transfer heat from hot exhaust air to incoming fresh air via plate or rotary heat exchangers. Polymer air preheaters resist corrosion and fouling.
Applications: Preheating dryer inlet air, reducing fuel consumption by up to 20%.
Advantages: Simple, cost-effective, low maintenance.
Air-to-Liquid Heat Exchangers:
Capture heat from exhaust to warm liquids for process heating or facility HVAC.
Applications: Heating process water in food processing plants.
Advantages: Versatile heat reuse.
Heat Pumps:
Upgrade low-temperature waste heat to higher temperatures for reuse.
Applications: Lifting heat for dryer air preheating in chemical or dairy industries.
Advantages: High efficiency for low-temperature sources.
Direct Contact Heat Exchangers:
Hot exhaust gases directly contact a liquid to transfer heat, often cleaning flue gas contaminants.
Applications: Recovering heat from kilns, ovens, or dryers.
Advantages: Cleans exhaust while recovering heat.
Waste Heat Boilers:
Convert high-temperature exhaust into steam for process use or power generation.
Applications: High-temperature dryers in ceramics or minerals processing.
Advantages: Generates steam or electricity.
Benefits of Waste Heat Recovery for Dryers
Energy Savings: Efficiency improvements of up to 20%.
CO2 Reduction: Every 1% efficiency gain cuts CO2 emissions by 1%.
Cost Reduction: Payback periods from months to 3 years.
Environmental Compliance: Reduces emissions and waste heat release.
Process Optimization: Stable temperatures enhance product quality.
Challenges and Solutions
Fouling and Corrosion: Polymer heat exchangers or in-line cleaning systems mitigate issues.
Heat Sink Availability: Requires nearby heat use for economical integration.
System Design: Custom engineering ensures compatibility.

Industrial heat recovery box, waste gas and heat recovery, gas to gas heat exchanger

The industrial heat recovery box is a compact and efficient system designed for recovering heat from waste gas streams in various industrial applications. It utilizes a gas-to-gas heat exchanger to transfer thermal energy from hot exhaust gases to incoming fresh air without mixing the two airstreams. This process significantly improves energy efficiency by reducing the need for additional heating, leading to lower operational costs and reduced environmental impact.

Constructed with durable materials such as aluminum or stainless steel, the system is capable of withstanding high temperatures and corrosive environments. The internal heat exchanger, often made of aluminum foil or plates, ensures high thermal conductivity and efficient heat transfer. The design prevents cross-contamination between dirty exhaust air and clean supply air, making it suitable for industries such as food processing, tobacco, printing, chemical, and sludge treatment.

This energy-saving solution not only recovers waste heat but also helps improve indoor air quality and maintain stable production environments. Easy to install and maintain, the industrial heat recovery box is a smart choice for factories aiming to enhance sustainability and meet energy-saving regulations.

Industrial heat recovery box, waste gas and heat recovery, gas to gas heat exchanger

Industrial heat recovery box, waste gas and heat recovery, gas to gas heat exchanger

Kiln waste heat recovery and reuse system - gas stainless steel cross flow heat exchanger scheme

The kiln waste heat recovery and reuse system aims to fully utilize the high-temperature heat in the kiln exhaust gas, and achieve a win-win situation of energy conservation and environmental protection through gas stainless steel cross flow heat exchangers. The core of this solution lies in the use of a stainless steel cross flow heat exchanger, which efficiently exchanges heat between high-temperature exhaust gas and cold air, generating hot air that can be reused.

Working principle: The exhaust gas and cold air flow in a cross flow manner inside the heat exchanger and transfer heat through the stainless steel plate wall. After releasing heat from exhaust gas, it is discharged. Cold air absorbs the heat and heats up into hot air, which is suitable for scenarios such as assisting combustion, preheating materials, or heating.

Advantages:

Efficient heat transfer: The cross flow design ensures a heat transfer efficiency of 60% -80%.
Strong durability: Stainless steel material is resistant to high temperatures and corrosion, and can adapt to complex exhaust environments.
Flexible application: Hot air can be directly fed back to the kiln or used for other processes, with significant energy savings.
System process: Kiln exhaust gas → Pre treatment (such as dust removal) → Stainless steel heat exchanger → Hot air output → Secondary utilization.

This solution is simple and reliable, with a short investment return cycle, making it an ideal choice for kiln waste heat recovery, helping enterprises reduce energy consumption and improve efficiency.

Waste heat recovery from spray painting exhaust gas

Spray coating is a surface treatment method that sprays plastic powder onto parts, widely used in various fields such as automotive, electronic products, furniture and appliances, construction industry, machinery, and public facilities. The waste heat recovery plate heat exchanger for spray coating waste gas is an energy recovery device that can recover and utilize the heat energy generated during the high-temperature baking process of spray coating.


working principle:
The plate heat exchanger for waste heat recovery from spray coating waste gas transfers the heat from the dry waste gas to other media, such as fresh air or water, to achieve energy recovery and utilization. The device consists of a series of parallel arranged metal plates, and the gas from the heat source and cold source flows cross between the plates, achieving heat transfer through thermal conduction and convective heat transfer of the metal plates.
Application areas:
Spray painted waste gas heat recovery plate heat exchangers are widely used in industries that require a large amount of thermal energy, such as metallurgy, chemical industry, building materials, machinery, electricity, etc. In these industries, the exhaust and smoke exhaust of various smelting furnaces, heating furnaces, internal combustion engines, and boilers, as well as the residual heat of flue gas from industrial kilns, are the main objects of waste heat recovery.
Product advantages:
Efficient heat transfer: The plate type gas waste heat recovery heat exchanger adopts an efficient plate design with a high total heat transfer film coefficient, which can quickly and effectively transfer heat.
Compact structure: The equipment occupies a small area, is lightweight, and has a large heat exchange area per unit volume, making it suitable for situations with limited space.
Safe and reliable: The equipment adopts a fully welded form, and the manufacturing process strictly follows the enterprise standards. Multiple pressure testing procedures ensure that the equipment can be used for a long time without leakage.
Energy saving and environmental protection: By using heat exchange to cool down the waste heat flue gas, the heat recycling system achieves the goal of energy saving, improves the economic efficiency of the enterprise, and reduces operating costs.
matters needing attention:
When selecting and using spray coating waste gas heat recovery plate heat exchangers, it is necessary to design and install them according to specific spray coating process parameters and requirements. It is important to ensure that the selection of the heat exchanger is appropriate, the material is heat-resistant, and appropriate control measures are taken to ensure the stability and safety of the heat exchange process.

Drying waste heat recovery

The heat pump drying heat recovery system can be applied to the drying of food, medicinal materials, tobacco, wood, and sludge. It has the characteristics of good drying quality and high degree of automation, and is the best and preferred product for energy-saving, green, and environmental protection in the modern drying industry.

The unit utilizes the reverse Carnot principle and efficient heat recovery technology. Throughout the entire drying and dehumidification process, the humid air in the drying room is connected to the main unit through a return air duct. The sensible and latent heat of the humid air is recovered using a sensible heat plate heat recovery device for heat recovery and reuse, greatly improving the performance of the main unit, drying speed, and material quality.

Calculation method for waste heat recovery from exhaust gas

There are two main approaches to calculate the potential for waste heat recovery from exhaust gas:

1. Thermodynamic Approach:

This method uses the principles of thermodynamics to determine the theoretical maximum amount of heat that can be recovered. Here's what you need to consider:

  • Mass flow rate (ṁ) of the exhaust gas (kg/s) - This can be obtained from engine specifications or measured with a flow meter.
  • Specific heat capacity (Cp) of the exhaust gas (kJ/kg⋅K) - This value varies with temperature and needs to be obtained from tables or thermodynamic software for the specific gas composition of your exhaust.
  • Inlet temperature (T_in) of the exhaust gas (°C) - Measured with a temperature sensor.
  • Outlet temperature (T_out) of the exhaust gas after heat recovery (°C) - This is the desired temperature after heat is removed for your chosen application (e.g., preheating combustion air, generating hot water).

Heat recovery potential (Q) can be calculated using the following formula:

Q = ṁ * Cp * (T_in - T_out)

2. Simplified Approach:

This method provides a rough estimate and is easier to use for initial assessments. It assumes a specific percentage of the exhaust gas energy can be recovered. This percentage can vary depending on the engine type, operating conditions, and the chosen heat exchanger efficiency.

Estimated heat recovery (Q) can be calculated with:

Q = Exhaust gas energy content * Recovery factor

Exhaust gas energy content can be estimated by:

Exhaust gas energy content = Mass flow rate * Lower heating value (LHV) of the fuel

Lower heating value (LHV) is the amount of heat released during combustion when the water vapor formed condenses (available from fuel specifications).

Recovery factor is a percentage typically ranging from 20% to 50% depending on the engine type, operating conditions, and the chosen heat exchanger efficiency.

Important Notes:

  • These calculations provide theoretical or estimated values. The actual heat recovery may be lower due to factors like heat exchanger inefficiencies and piping losses.
  • The chosen outlet temperature (T_out) in the thermodynamic approach needs to be realistic based on the application and limitations of the heat exchanger.
  • Safety considerations are crucial when dealing with hot exhaust gases. Always consult with a qualified engineer for designing and implementing a waste heat recovery system.

Additional factors to consider:

  • Condensation: If the exhaust gas temperature drops below the dew point, water vapor will condense. This can release additional latent heat but requires proper condensate management.
  • Fouling: Exhaust gas can contain contaminants that can foul heat exchanger surfaces, reducing efficiency. Regular cleaning or choosing appropriate materials may be necessary.

By understanding these methods and factors, you can calculate the potential for waste heat recovery from exhaust gas and assess its feasibility for your specific application.

Mine ventilation waste heat recovery heat exchanger

Mine ventilation waste heat recovery heat exchangers are devices used to recover and utilize the waste heat generated from mine ventilation systems. In underground mining operations, a significant amount of heat is produced during the ventilation process, which is usually discharged into the atmosphere as waste.

The purpose of a waste heat recovery heat exchanger is to capture and transfer the heat from the mine ventilation air to another medium, such as water or air, for further use. The heat exchanger is typically installed in the ventilation system, where the hot ventilation air passes through it, transferring its heat to the secondary medium.

The heat transfer process in the heat exchanger allows the ventilation air to cool down while simultaneously heating up the secondary medium. The heated secondary medium can then be utilized for various applications, such as space heating, water heating, or even power generation.

By implementing waste heat recovery heat exchangers in mine ventilation systems, the heat energy that would otherwise be wasted can be effectively recovered and used, resulting in energy savings and improved overall energy efficiency of the mining operation. This approach not only reduces energy consumption but also contributes to a more sustainable and environmentally friendly mining industry.

Need Help?
en_USEnglish