タグアーカイブ 向流熱交換器

向流熱交換器と並流熱交換器

向流式熱交換器と並流式熱交換器は、2種類の流体間の熱伝達における主要な構成であり、流体の流れ方向、効率、温度プロファイル、用途への影響が異なります。以下は、それぞれの設計、性能、および使用例に基づいた簡潔な比較です。

1. フロー構成

  • 向流熱交換器:
    • 流体は反対方向に流れます (例: 一方の端から熱い流体が入り、反対側の端から冷たい流体が入ります)。
    • 例: 熱い流体は左から右に流れ、冷たい流体は右から左に流れます。
  • パラレルフロー熱交換器:
    • 流体は同じ方向に流れます (例: 熱い流体と冷たい流体は同じ端から入り、反対側の端から出ます)。
    • 例: 両方の流体は左から右に流れます。

2. 熱伝達効率

  • 逆流:
    • より高い効率: 熱交換器の全長にわたって大きな温度差 (ΔT) を維持し、単位面積あたりの熱伝達を最大化します。
    • 適切に設計されたシステム (プレート式またはチューブ式の熱交換器など) では、最大 90~95% の熱効率を達成できます。
    • 冷たい流体の出口温度は熱い流体の入口温度に近づくことができるため、最大限の熱回収を必要とする用途に最適です。
  • 並列フロー:
    • 効率が低い: 温度差 (ΔT) は入口で最大になりますが、両方の流体が交換器に沿って熱平衡に近づくにつれて急速に減少します。
    • 冷たい流体の出口温度が熱い流体の出口温度を超えることができないため、通常は 60~80% の効率を実現します。
    • ほぼ完全な熱伝達を必要とする用途には効果が低くなります。

3. 温度プロファイル

  • 逆流:
    • 温度勾配はより均一になり、交換器全体の ΔT はほぼ一定になります。
    • より近いアプローチ温度(熱い流体の出口温度と冷たい流体の入口温度の差)を可能にします。
    • 例: 熱い流体は 100°C で入り、40°C で出ます。冷たい流体は 20°C で入り、90°C 近くで出ます。
  • 並列フロー:
    • 入口での温度差は大きいですが、交換器に沿って減少し、流体が同様の温度に達すると熱伝達が制限されます。
    • 例: 熱い流体は 100°C で入り、60°C で出ます。冷たい流体は 20°C で入り、50°C にしか達しない場合があります。

4. デザインと複雑さ

  • 逆流:
    • 多くの場合、流体が反対方向に流れるようにするために、より複雑な配管またはプレートの配置が必要になり、製造コストが増加する可能性があります。
    • 効率が向上するためコンパクトな設計が可能になり、同じ熱伝達率に必要な材料が減ります。
  • 並列フロー:
    • 両方の流体が同じ端から出入りするため、設計が簡単になり、配管の複雑さが軽減されます。
    • 同等の熱伝達を達成するには、より大きな熱伝達面積(より長いまたはより大きな熱交換器)が必要になる可能性があり、サイズと材料コストが増加します。

5. アプリケーション

  • 逆流:
    • 次のような高効率と最大限の熱回収が求められる用途に適しています。
      • HVAC システム(例:エネルギー回収換気装置)。
      • 工業プロセス(例:化学工場、発電)。
      • 廃水熱回収(例:シャワー熱交換器)。
      • 正確な温度制御が重要な極低温システム。
    • プレート熱交換器、二重管熱交換器、高性能シェルアンドチューブ設計でよく使用されます。
  • 並列フロー:
    • シンプルさが優先されるアプリケーション、または完全な熱伝達が重要ではないアプリケーションで使用されます。
      • 小規模冷却システム(例:自動車のラジエーター)。
      • 流体が特定の温度を超えてはならないプロセス (例: 冷たい流体の過熱を防ぐため)。
      • よりシンプルな構造のため、教育用または実験用のセットアップに最適です。
    • 基本的なチューブインチューブまたはシェルアンドチューブ熱交換器で一般的です。

6. メリットとデメリット

  • 逆流:
    • 利点:
      • 熱効率が高く、エネルギー損失が削減されます。
      • 同じ熱伝達能力でより小さいサイズ。
      • 温度差が大きいアプリケーションに適しています。
    • デメリット:
      • 設計と配管がより複雑になり、コストが増加する可能性があります。
      • 寒冷環境では結露や霜を防ぐために追加の対策が必要になる場合があります。
  • 並列フロー:
    • 利点:
      • 設計がシンプルで、製造と保守が容易です。
      • 場合によっては圧力降下が低くなり、ポンプコストが削減されます。
    • デメリット:
      • 効率が低いため、より大きな熱伝達面積が必要になります。
      • 出口温度制約によって制限されます (冷たい流体は熱い流体の出口温度を超えることはできません)。

7. 実践上の考慮事項

  • 逆流:
    • エネルギー回収システムに最適です (例: Holtop の 95% 効率の 3D クロスカウンターフロー交換器、または RECUTECH の RFK+ エンタルピー交換器)。
    • 多くの場合、結露を抑えるために親水性コーティングなどの機能が装備されています (例: Eri Corporation のアルミニウム プレート交換器)。
  • 並列フロー:
    • 基本的な HVAC システムや小規模な産業用冷却など、コストとシンプルさが効率性のニーズよりも重視されるアプリケーションで使用されます。
    • パフォーマンスの制限により、現代の高効率設計ではあまり一般的ではありません。

要約表

工業用空気対空気熱交換器 | 向流熱交換器

アン 産業用空気対空気熱交換器 2つの空気流を混合することなく熱を伝達し、HVACシステム、産業プロセス、換気におけるエネルギー効率を向上させます。 向流熱交換器 2 つの空気流が反対方向に流れ、交換面全体で一貫した温度勾配により熱伝達効率が最大化される特殊なタイプです。

産業用空気対空気向流熱交換器の主な特徴:

  • 効率: 向流設計では、高温流と低温流の温度差が比較的一定に保たれるため、直交流熱交換器や並流熱交換器に比べて、より高い熱効率 (多くの場合 70-90%) が達成されます。
  • 工事耐久性と耐腐食性を高めるため、通常はアルミニウム、ステンレス鋼、ポリマーなどの材料で作られています。プレート型またはチューブ型が一般的です。
  • アプリケーション: 工業用乾燥、廃熱回収、データ センター、建物の換気で空気を予熱または予冷するために使用されます。
  • 利点: エネルギーコストを削減し、二酸化炭素排出量を減らし、相互汚染を防ぐことで空気の質を維持します。
  • 課題: 逆流設計のため圧力損失が高く、ファンの消費電力が増加する場合があります。汚れや詰まりを防ぐため、メンテナンスが必要です。

例:

工場では、向流熱交換器によって高温の排気(例:80°C)から熱を回収し、流入する新鮮な空気(例:10°C ~ 60°C)を予熱することで、加熱エネルギーを大幅に節約できます。

industrial air to air heat exchanger | counterflow heat exchanger

工業用空気対空気熱交換器 | 向流熱交換器

向流熱交換器はどのように機能しますか?

向流式熱交換器では、隣接する2枚のアルミニウム板が空気の通過経路を形成します。給気は板の片側を、排気はもう片側を通過します。空気の流れは、直交流式熱交換器のように垂直ではなく、平行なアルミニウム板に沿って互いに通過します。排気中の熱は、板を通して暖かい空気から冷たい空気へと伝達されます。
排気は湿気や汚染物質で汚染されている場合もありますが、空気の流れはプレート熱交換器と混ざることはなく、給気は新鮮できれいな状態を保ちます。

向流熱交換器はどのように機能しますか?

向流型熱交換器では、隣接する2枚のアルミニウム板が空気の通過経路を形成します。給気は板の片側を、排気は反対側を通ります。空気の流れは、直交流型熱交換器のように垂直ではなく、平行なアルミニウム板に沿って互いに通過します。排気中の熱は、板を通して暖かい空気から冷たい空気へと伝達されます。

排気は湿気や汚染物質で汚染されている場合もありますが、空気の流れはプレート熱交換器と混ざることはなく、給気は新鮮できれいなままです。

ヘルプが必要ですか?
ja日本語