カテゴリーアーカイブ 業界情報

Indirect Cooling in Data Centers

Modern data centers are remarkably technologically complex, and keeping them running safely and efficiently requires continual close monitoring and management.

Maintaining the correct temperature is among the most important tasks faced by data center managers. Should the temperature and humidity rise to excessive levels inside the data center, condensation can start forming, damaging the machines within. This can cause massive damage and disruption, so it must be avoided at all costs. Fortunately, various technologies are on hand that can help keep data center temperatures at the right level.

There are numerous ways to cool a data center. Indirect air cooling uses external air, but by including an air-to-air heat exchanger, the outside air is kept in a separate loop, providing cooling without entering the server room.

Indirect cooling methods benefit by not contaminating the inside air with outdoor air pollutants and humidity. A heat exchanger keeps both airstreams separated while transferring the heat from the inside to the outside of the data center building. Consequently, the ambient and indoor air never mix.

Dry cooling is usually sufficient if the data center is located in a consistently low-temperature area, meaning no water is involved. However, by spraying water on the ambient air side of the heat exchanger, an evaporative effect is achieved, resulting in a lower indoor air temperature. This method is called indirect evaporative cooling (IEC).

Ideally suited for warm, dry climates, IEC provides excellent cooling potential with low operational- and first-cost. Ambient temperature reductions of 6-8 °C (10-15 °F) are typical in summer conditions. IEC provides up to 28% in energy savings compared to conventional free cooling and 52% to air-cooled Free Cooling alternatives.

Evaporative cooling requires a plate heat exchanger that balances high efficiency with low pressure drop, offers solid corrosion protection, and reliable water tightness. Cross-flow heat exchangers meet all these requirements while providing outstanding cooling capacity.

Our crossflow heat exchangers, especially with evaporative cooling technology, provide an efficient, low-cost, and environmentally friendly alternative to traditional cooling methods.

Indirect Cooling in Data Centers

白煙を素早く除去する方法

The principle of using a condenser for dehumidification to eliminate white smoke is mainly based on the physical changes of water vapor in the flue gas. The condenser cools the flue gas with low-temperature water or air, gradually reducing its temperature, and the water vapor inside begins to condense into small water droplets. These small water droplets gather inside the condenser and eventually form liquid water, which is then removed through drainage pipes. Dehumidification through a condenser is an effective technical means to eliminate white smoke. It can not only reduce visual pollution, but also help improve the operational efficiency and energy-saving effect of environmental protection equipment. We can provide you with a suitable dehumidification solution for flue gas, which is both economical and environmentally friendly. Welcome to consult us via email.

産業排ガスを除去するための効率的な装置

熱交換技術を用いた産業用排ガス脱硫装置は、排ガス中の水蒸気含有量を低減し、煙突からの排出時に発生する白煙を除去します。排ガスの白化には、主に以下のような方法があります。

排ガス加熱技術:脱硫された湿潤排ガスを熱交換器を通して工業用高温排ガスと熱交換させることで、排ガスの排出温度を上昇させ、排ガスの相対湿度を低下させ、水蒸気の凝縮による白煙の発生を防止します。この方法は白煙の発生を効果的に低減できますが、煙を加熱するためにある程度のエネルギーを必要とします。

排ガス凝縮技術:まず飽和排ガス中の水蒸気を部分的に凝縮し、その後排ガスを加熱します。この方法は、排ガス中の水分含有量を低減することで白煙の発生を抑制するとともに、水資源の一部を回収します。

MGGH技術:電気集塵機の前後に排ガス冷却熱交換器を設置し、脱硫装置後に排ガス加熱熱交換器を設置し、熱媒水循環システムを構築する。この技術は、元の煙から熱を抽出し、清浄な煙を加熱する。通常、白煙の発生を防ぐため、清浄な煙の温度は75~80℃に上昇させる必要がある。

まとめると、これらの方法はそれぞれ長所と短所があり、異なる産業環境やニーズに適しています。特定の排ガス脱硫技術を選択する際には、プロセス条件、廃熱源、投資要件などの要素を考慮する必要があります。メールでのご相談をお待ちしております。

スモークスクラバー:物理的な方法で白煙を効率的に除去

The smoke scrubber condenses water vapor in the flue gas into liquid through a condenser, and gas pollutants adhere to the condensed liquid before being discharged through exhaust gas. This technology does not require a collector, but relies on the precipitated liquid to carry away pollutants, thereby reducing operating costs and minimizing the environmental pollution caused by white smoke.

The white smoke removal equipment produced by our company has a compact design layout, flexible installation, and easy operation, which can efficiently and quickly solve the white smoke generated in industrial production. Mainly used for desulfurization and whitening of flue gas from coal-fired boilers, gas-fired boilers, power plants, metallurgy and other industries.

Energy saving devices for heat dissipation in computer rooms

The heat exchange core of the computer room's heat dissipation energy-saving device is an efficient heat dissipation solution specifically designed for data centers or server rooms. By optimizing heat exchange efficiency, energy consumption can be reduced and system performance can be improved. The heat exchanger produced by our company uses hydrophilic aluminum foil as the heat exchange material, and the surface has been specially treated to have excellent hydrophilicity, which can promote the rapid formation and removal of condensed water. During the heat exchange process, the hydrophilic layer can effectively increase the heat exchange area and improve the heat exchange efficiency. Adopting a multi-layer microchannel design increases the contact area between the fluid and the metal wall, thereby improving the heat transfer efficiency. Greatly improved the energy efficiency ratio of data centers and reduced operating costs.

ショッピングモールの空調システム向け熱回収技術

In today's pursuit of high-quality shopping experience, we not only focus on the richness and diversity of products, but also care about the comfort and sustainability of the shopping environment.
The core of our company's air conditioning system heat recovery technology lies in the perfect combination of high-efficiency heat exchanger design and intelligent control system. It can efficiently collect the waste heat generated during the operation of air conditioning and convert it into valuable energy for winter heating, domestic hot water, and even pre cooling fresh air in shopping malls.
This process does not require additional energy consumption and can achieve internal energy recycling, significantly reducing the overall energy consumption cost of the mall. And it can automatically adjust the operating status and heat recovery intensity of the air conditioner. This means that whether it's scorching summer or cold winter, the mall can ensure constant temperature and humidity, providing customers with the most comfortable shopping environment while achieving the best energy-saving effect. Welcome to consult via email.

中央空調システムの熱回収のための省エネ計画

In the operation of central air conditioning systems, we can adopt high-efficiency heat exchangers for energy-saving renovation plans, and can choose plate heat exchangers or microchannel heat exchangers with high heat transfer efficiency and low fluid resistance. Our heat exchanger has a larger heat transfer area and more efficient heat transfer performance, which can reduce energy consumption under the same heat transfer conditions. Install a waste heat recovery device in the central air conditioning system to recover and reuse the emitted heat. It can also be combined with heat pump technology, which is an efficient way of transferring heat energy by consuming a small amount of electricity or fuel energy to transfer the heat from a low-temperature heat source to a high-temperature heat source. The application of heat pump technology in central air conditioning systems can improve the coefficient of performance (COP) of the system and reduce energy consumption.

エアコン用熱交換器の自由な組み合わせ

モジュラー空調ユニットは、建物の実際のニーズに合わせて自由に組み合わせることができる、効率的で柔軟性の高いセントラル空調ソリューションです。ユニット数を増減することで、さまざまな冷房または暖房のニーズに対応できます。各ユニットは戻り配管と供給配管を介して相互に接続され、メイン戻り配管とメイン供給配管のモジュール式の組み合わせを形成します。
当社では、同じ圧力損失でチューブ式熱交換器に比べて3~5倍の熱伝達率を誇るプレート式熱交換器を採用しています。また、チューブ式熱交換器の3分の1のスペースしか占有せず、90%を超える熱回収率を実現しています。
当社の空冷ヒートポンプエアコンは、圧縮冷凍サイクルを採用した、冷房と暖房の2つの用途を持つ空調ユニットです。夏季の冷房では外気を利用して放熱(冷房)し、冬季の暖房では外気から熱を抽出(空気熱源)します。
メールでのご相談も歓迎いたします。

Waste heat recovery from spray painting exhaust gas

Spray coating is a surface treatment method that sprays plastic powder onto parts, widely used in various fields such as automotive, electronic products, furniture and appliances, construction industry, machinery, and public facilities. The waste heat recovery plate heat exchanger for spray coating waste gas is an energy recovery device that can recover and utilize the heat energy generated during the high-temperature baking process of spray coating.


動作原理:
The plate heat exchanger for waste heat recovery from spray coating waste gas transfers the heat from the dry waste gas to other media, such as fresh air or water, to achieve energy recovery and utilization. The device consists of a series of parallel arranged metal plates, and the gas from the heat source and cold source flows cross between the plates, achieving heat transfer through thermal conduction and convective heat transfer of the metal plates.
Application areas:
Spray painted waste gas heat recovery plate heat exchangers are widely used in industries that require a large amount of thermal energy, such as metallurgy, chemical industry, building materials, machinery, electricity, etc. In these industries, the exhaust and smoke exhaust of various smelting furnaces, heating furnaces, internal combustion engines, and boilers, as well as the residual heat of flue gas from industrial kilns, are the main objects of waste heat recovery.
Product advantages:
Efficient heat transfer: The plate type gas waste heat recovery heat exchanger adopts an efficient plate design with a high total heat transfer film coefficient, which can quickly and effectively transfer heat.
Compact structure: The equipment occupies a small area, is lightweight, and has a large heat exchange area per unit volume, making it suitable for situations with limited space.
Safe and reliable: The equipment adopts a fully welded form, and the manufacturing process strictly follows the enterprise standards. Multiple pressure testing procedures ensure that the equipment can be used for a long time without leakage.
Energy saving and environmental protection: By using heat exchange to cool down the waste heat flue gas, the heat recycling system achieves the goal of energy saving, improves the economic efficiency of the enterprise, and reduces operating costs.
matters needing attention:
When selecting and using spray coating waste gas heat recovery plate heat exchangers, it is necessary to design and install them according to specific spray coating process parameters and requirements. It is important to ensure that the selection of the heat exchanger is appropriate, the material is heat-resistant, and appropriate control measures are taken to ensure the stability and safety of the heat exchange process.

Exhaust gas heat exchanger for heat pump drying

The exhaust gas heat exchanger for heat pump drying is a device used to recover and reuse the waste heat generated during the drying process. It can improve energy efficiency, reduce operating costs, and minimize environmental impact, making it an indispensable part of modern industry.
動作原理:
Plate heat exchangers are composed of heat exchange cores, guide vanes, fixed frames, etc. They adopt cross flow, counter flow, or cross counter flow structures to ensure that the two airflows do not mix and to avoid the transfer of odors and moisture. This design improves the efficiency and reliability of heat exchange. When there is a temperature difference between two airflows, they will exchange heat through a heat-conducting plate. The hotter side transfers heat to the cooler side to achieve energy recovery. Plate heat exchangers adopt a modular structure, with low maintenance costs and easy use. According to different air flow channels, it can be divided into cross flow, counter flow, and cross counter flow types to meet different application requirements.
Plate heat exchangers are not only used in heat pump drying systems, but also widely used in various industries such as HVAC, communication, power, textile, automotive, food, medical, agriculture, animal husbandry, etc., for ventilation, energy recovery, cooling, preheating, dehumidification, and waste heat recovery.

ヘルプが必要ですか?
ja日本語