カテゴリーアーカイブ 業界とソリューション

換気システムにおける熱交換器の応用

Heat exchangers play a key role in ventilation systems by improving air handling efficiency, reducing energy consumption, and enhancing indoor air quality. Below is a detailed explanation of their functions and common applications.


I. Functions of Heat Exchangers in Ventilation Systems

  1. Energy Saving
    Heat exchangers recover thermal energy (or cooling energy) from exhaust air and transfer it to the incoming fresh air. This reduces the energy required to heat or cool fresh air, making it ideal for both winter heating and summer cooling.

  2. Improving Fresh Air Quality and Comfort
    While ensuring sufficient ventilation, heat exchangers help preheat or precool the fresh air, minimizing temperature differences between indoor and outdoor air, and improving occupant comfort.

  3. Boosting System Efficiency (COP)
    By recovering both sensible and latent heat from exhaust air, the system’s energy efficiency is significantly improved.

  4. Assisting Temperature and Humidity Control
    In environments such as cleanrooms, laboratories, or temperature-controlled workshops, heat exchangers serve as pre-conditioning units to stabilize incoming air conditions.


II. Common Types of Heat Exchangers in Ventilation Systems

  1. Plate Heat Exchanger (Sensible Heat)

    • Uses aluminum or plastic plates to separate exhaust and supply air streams while transferring heat across the plates.

    • Commonly used in commercial buildings, schools, and office ventilation.

    • Efficiency typically ranges from 50% to 70%.

  2. Total Heat Recovery Unit (Sensible + Latent Heat)

    • Uses a special membrane that allows both heat and moisture exchange.

    • Ideal for residential buildings, hospitals, hotels, and environments with humidity control needs.

    • Provides better comfort and energy savings.

  3. Heat Pipe Heat Exchanger

    • Features a simple structure with no moving parts; transfers heat via heat pipes while keeping airflow streams completely separate.

    • Suitable for server rooms, preheating/precooling fresh air, and drying systems.

    • Performs well in high-temperature exhaust air environments.

  4. Rotary Wheel Heat Exchanger

    • A rotating wheel with hygroscopic coating simultaneously contacts both fresh and exhaust air, transferring both heat and moisture.

    • High efficiency (up to 70%–85%), but with a potential risk of cross-contamination.

    • Suitable for scenarios where energy efficiency is prioritized and cross-contamination is not critical.

  5. Indirect Evaporative Cooling Heat Exchanger

    • Uses exhaust air evaporation to cool incoming air without adding humidity.

    • Ideal for hot, dry environments such as industrial workshops and warehouses.


III. Typical Application Scenarios

  • Industrial Facilities: Improve temperature and humidity control while lowering fresh air energy consumption.

  • Cleanrooms and Operating Rooms: Stabilize airflow and temperature for controlled environments.

  • Commercial Buildings and Offices: Precondition fresh air and improve HVAC efficiency.

  • Public Spaces (Subways, Airports, Schools): Ensure good ventilation while saving energy.

  • Data Centers and Server Rooms: Recover waste heat for air preheating during winter.

  • Livestock Houses and Greenhouses: Balance ventilation with temperature and humidity stability to support growth.


IV. Conclusion

The application of heat exchangers in ventilation systems has become an essential part of modern HVAC design. By recovering thermal energy, enhancing indoor comfort, and improving air quality, heat exchangers are a core component in green buildings, energy-saving solutions, and intelligent ventilation systems.

炭鉱換気シャフト還気廃熱利用プロジェクトにおける中間壁熱交換器の役割

In the coal mine ventilation shaft exhaust heat utilization project, the intermediate wall-type heat exchanger is a critical piece of equipment for safely transferring heat. Its role is not only about heat exchange efficiency but also about ensuring system safety and operational reliability. The specific functions of the intermediate wall-type heat exchanger are as follows:

To achieve the objectives of shaft freeze protection and winter heating in the auxiliary shaft area, the intermediate wall-type heat exchanger is responsible for safely isolating high-temperature return air from fresh air or clean media while enabling efficient heat exchange. Its primary functions include:

Efficient recovery and utilization of return air waste heat

Utilizing the significant sensible heat carried by return air, the heat is stably transferred to fresh air or hot water systems through the metal intermediate wall, raising the temperature of incoming fresh air into the shaft to above 2°C, meeting freeze protection requirements.

Ensuring cleanliness and safety during heat exchange

Return air contains dust, moisture, and even trace harmful gases, which cannot directly enter the fresh air system. The intermediate wall structure effectively isolates hot and cold media, preventing cross-contamination and ensuring underground air quality and operational safety.

Enhancing the operational reliability of the heating system

The heat exchanger has a robust structure and stable operation, continuing to output heat even under extreme cold conditions. This ensures the continuity and reliability of winter heating in the auxiliary shaft, reducing the operational burden and risks associated with traditional electric heating and boiler systems.

Promoting energy conservation, emissions reduction, and green mine development

Through efficient heat exchange, heating energy consumption and operational costs are significantly reduced, lowering carbon emissions. This provides technical support for coal mines to achieve clean production and green transformation.

 

翻訳者 DeepL.com (無料版)

エチレングリコール熱回収換気ユニット

An ethylene glycol heat recovery ventilation unit is an air handling device that uses ethylene glycol solution as a heat transfer medium to recover heat or cooling energy from exhaust air, improving the energy efficiency of air conditioning systems. It is widely used in places requiring strict separation of fresh and exhaust air, such as hospitals, laboratories, and industrial facilities.

動作原理

The ethylene glycol heat recovery ventilation unit achieves energy recovery through a heat exchanger and ethylene glycol solution:

  1. Exhaust Side: The cooling or heating energy in the exhaust air is transferred to the ethylene glycol solution via a heat exchanger, altering the solution's temperature.
  2. Fresh Air Side: A circulation pump delivers the cooled or heated ethylene glycol solution to the fresh air side's heat exchanger, adjusting the fresh air temperature to reduce the operating load and energy consumption of the air conditioning system.
  3. Heat Recovery Efficiency: The heat recovery efficiency of the ethylene glycol solution can reach about 50%, depending on system design and operating conditions.

System Components

  • Fresh Air Side: Fresh air section, primary/medium efficiency filter section, ethylene glycol heat exchanger, and supply fan section.
  • Exhaust Side: Return air section, primary efficiency filter section, ethylene glycol heat exchanger, and exhaust fan section.

アプリケーション

  • Suitable for scenarios requiring complete isolation of fresh and exhaust air, such as hospitals and cleanrooms.
  • Ideal for industrial or commercial buildings needing efficient energy recovery, such as factories and transportation facilities.

利点

  • High Energy Efficiency: Reduces air conditioning system energy consumption through heat recovery, lowering operating costs.
  • Flexibility: Adjusts fresh air temperature based on varying climate conditions, adapting to diverse environments.
  • Safety: Ethylene glycol solution prevents heat exchanger freezing in low-temperature environments.

Considerations

  • メンテナンス: Regular checks on the ethylene glycol solution concentration and circulation pump operation are necessary.
  • Design Requirements: System design must consider the layout of fresh and exhaust air ducts to ensure efficient heat exchange and prevent cross-contamination.

熱回収外気ユニット

The heat recovery fresh air unit is an energy-efficient ventilation system that introduces fresh outdoor air while recovering heat from the exhaust air. It uses a heat exchanger—typically a plate-type or rotary wheel exchanger—to transfer thermal energy between incoming and outgoing airstreams without mixing them, significantly reducing heating or cooling loads.

Constructed with high-efficiency filters, fans, and a heat exchanger core (commonly aluminum or enthalpy material), the system ensures a continuous supply of fresh air while maintaining indoor temperature stability and improving air quality. It helps reduce energy consumption, enhance indoor comfort, and comply with modern building energy-saving standards.

These units are ideal for applications in offices, factories, schools, hospitals, and other facilities requiring reliable ventilation and temperature control with reduced operating costs.

外気システムにおける空気対空気熱交換器の仕組み

外気システムにおける空気対空気熱交換器は、流入する新鮮な空気と排出される古い空気の間で熱を伝達しますが、両者を混合することはありません。その仕組みは以下のとおりです。

  1. 構造熱交換器は、薄いチャネルまたはプレートが交互に配置されたコアで構成されており、多くの場合金属またはプラスチック製で、入ってくる空気と出ていく空気を分離します。これらのチャネルは、空気の流れを遮断しながら熱伝達を可能にします。
  2. 熱伝達:
    • 冬には、排気される暖かい室内の空気がその熱をより冷たい新鮮な空気に伝え、それを暖めます。
    • 夏には、涼しい室内の空気がその「涼しさ」を暖かい空気に移し、暖かい空気を事前に冷却します。
    • このプロセスは、温度差によって熱交換器の壁を介した伝導によって発生します。
  3. 種類:
    • クロスフロー: 空気の流れが垂直に流れるため、中程度の効率が得られます(50-70%)。
    • 逆流: 空気の流れが反対方向に流れ、熱伝達が最大化されます (最大 90% の効率)。
    • ロータリー(エンタルピーホイール)回転ホイールが熱と湿気を吸収・移動し、湿度コントロールに最適です。
  4. 利点:
    • 排気熱の50~90%を回収することでエネルギーロスを削減します。
    • 冷暖房コストを最小限に抑えながら新鮮な空気を供給することで、室内の空気の質を維持します。
  5. 外気システムでの操作:
    • ファンが交換器を通じて建物から古い空気を吸い込み、別のファンが新鮮な屋外の空気を吸い込みます。
    • 交換器により、流入する空気が分配前に(室内温度に近くなるように)調整され、HVAC システムの負荷が軽減されます。
  6. 湿気コントロール (一部のモデル)
    • エンタルピー交換器は湿気も移動させ、室内の過度の乾燥や湿気を防ぎます。

このシステムは、空気の質を維持しながら熱をリサイクルすることで、換気効率、エネルギー節約、快適性を確保します。

中国のヒートポンプ式新鮮空気換気システム

A heat pump fresh air ventilator system combines ventilation and energy recovery, using a heat pump to manage the temperature of incoming fresh air while simultaneously removing stale air from a space. This type of system is especially energy-efficient, as it not only improves indoor air quality but also recycles the thermal energy from the exhaust air.

Here’s how it typically works:

  1. Fresh Air Intake: The system draws in fresh air from the outside.
  2. Heat Pump Operation: The heat pump extracts heat from the exhaust air (or vice versa depending on the season) and transfers it to the incoming fresh air. In the winter, it can warm up the cold outside air; in the summer, it can cool the incoming air.
  3. Ventilation: As the system works, it also ventilates the space by removing stale, polluted air, maintaining a constant flow of fresh air without wasting energy.

The benefits include:

  • エネルギー効率: The heat pump reduces the need for additional heating or cooling, saving on energy costs.
  • Improved Air Quality: Constantly introducing fresh air helps remove indoor pollutants, ensuring better air quality.
  • Temperature Control: It can help maintain comfortable indoor temperatures year-round, whether heating or cooling is needed.

These systems are commonly used in energy-efficient buildings, homes, and commercial spaces where both air quality and energy savings are priorities.

換気および省エネ工学における空気対空気熱交換器の利用

空気対空気熱交換器の中心的な機能は、排気(室内排気)に含まれる残留熱を熱交換によって新鮮な空気(室外吸気)に伝達することです。この際、2つの気流を直接混合することはありません。このプロセス全体は、熱伝導と省エネの原理に基づいており、以下の通りです。

排気廃熱回収:
屋内に排出される空気(排気)には通常、大量の熱(冬は暖かい空気、夏は冷たい空気)が含まれており、通常は屋外に直接放散されます。
排気は熱交換器の片側を流れ、熱交換器の熱伝導材料に熱を伝達します。
熱伝達:
空気対空気熱交換器は通常、熱伝導性に優れた金属板、チューブ束、またはヒートパイプで構成されています。
新鮮な空気(外部から導入された空気)は熱交換器の反対側を流れ、排気側の熱に間接的に接触し、熱交換器の壁を通して熱を吸収します。
冬には新鮮な空気が予熱され、夏には新鮮な空気が予冷されます(排気がエアコンの冷気の場合)。
エネルギーの回収と節約:
新鮮な空気を予熱または予冷することで、その後の暖房または冷房設備のエネルギー消費を削減できます。例えば、冬季には屋外温度が0℃で排気温度が20℃の場合、熱交換器を通過すると新鮮な空気の温度は15℃まで上昇します。これにより、暖房システムは新鮮な空気を0℃から加熱するのではなく、15℃から目標温度まで加熱するだけで済みます。
気流遮断:
排気と新鮮な空気は熱交換器内の異なるチャネルを通って流れるため、相互汚染が回避され、室内の空気の質が確保されます。
技術プロセス
排気収集:室内の排気ガスは換気システム(排気ファンなど)を通じて空気対空気熱交換器に導かれます。
外気導入:屋外の新鮮な空気は外気ダクトを通って熱交換器の反対側に入ります。
熱交換: 熱交換器内では、排気と新鮮な空気が独立したチャネルで熱を交換します。
外気処理: 予熱 (または予冷) された外気が空調システムに入るか、直接室内に送られ、必要に応じて温度や湿度がさらに調整されます。
排気:熱交換が完了すると排気温度が低下し、最終的に屋外に排出されます。
空気対空気熱交換器の種類
プレート式熱交換器: 複数の薄いプレート層で構成され、排気と新鮮な空気が隣接するチャネルで反対方向または交差方向に流れるため、効率が高くなります。
ホイール熱交換器: 回転する熱ホイールを使用して排気熱を吸収し、新鮮な空気に伝達します。高風量システムに適しています。
ヒートパイプ熱交換器:ヒートパイプ内の作動流体の蒸発と凝縮を利用して熱を伝達し、温度差が大きいシナリオに適しています。
アドバンテージ
省エネ:排気廃熱の70%~90%を回収し、暖房や冷房のエネルギー消費を大幅に削減します。
環境保護: エネルギー消費量を削減し、二酸化炭素排出量を削減します。
快適性の向上: 冷たいまたは熱い新鮮な空気が直接入るのを防ぎ、室内環境を改善します。

空気対空気熱交換器を内蔵した鉱山排気熱抽出ボックス

The built-in air-to-air heat exchanger in the mine exhaust heat extraction box is a device specifically designed to recover waste heat from mine exhaust air. Mine exhaust refers to the low-temperature, high humidity waste gas discharged from a mine, which usually contains a certain amount of heat but is traditionally discharged directly without being utilized. This device uses a built-in air-to-air heat exchanger (i.e. air-to-air heat exchanger) to transfer heat from the exhaust air to another stream of cold air, thereby achieving the goal of waste heat recovery.

動作原理
Lack of air input: The mine's lack of air is introduced into the heat extraction box through the ventilation system. The temperature of the exhaust air is generally around 20 ℃ (the specific temperature varies depending on the depth of the mine and the environment), and the humidity is relatively high.
Function of Air to Air Heat Exchanger: The built-in air to air heat exchanger usually adopts a plate or tube structure, and the exhaust air and cold air exchange heat through a partition type in the heat exchanger. The heat from the lack of wind is transferred to the cold air, while the two airflows do not mix directly.
Heat output: After being heated by heat exchange, the cold air can be used for anti freezing of mine air inlet, heating of mining area buildings, or domestic hot water, while the exhaust air is discharged at a lower temperature after releasing heat.
Characteristics and advantages
Efficient and energy-saving: Air to air heat exchangers do not require additional working fluids and directly utilize the heat transfer from air to air. They have a simple structure and low operating costs.
Environmental friendliness: By recycling exhaust heat and reducing energy waste, it meets the requirements of green and low-carbon development.
Strong adaptability: The equipment can be customized and designed according to the flow rate and temperature of the mine exhaust, suitable for mines of different scales.
Easy maintenance: Compared to heat pipe or heat pump systems, air-to-air heat exchangers have a relatively simple structure and require less maintenance.
アプリケーションシナリオ
Anti freezing at the wellhead: Use the recovered heat to heat the mine air intake and avoid freezing in winter.
Building heating: providing heating for office buildings, dormitories, etc. in the mining area.
Hot water supply: Combined with the subsequent system, provide a heat source for domestic hot water in the mining area.
precautions
Moisture treatment: Due to the high humidity of the exhaust air, the heat exchanger may face the problem of condensation water accumulation, and a drainage system or anti-corrosion materials need to be designed.
Heat transfer efficiency: The efficiency of an air-to-air heat exchanger is limited by the specific heat capacity and temperature difference of the air, and the recovered heat may not be as high as that of a heat pump system, but its advantage lies in its simple structure.

畜産換気における空気対空気熱回収交換器の応用

その 空気対空気熱回収交換器 畜産換気産業において、エネルギー効率を高め、最適な室内環境を維持することで、極めて重要な役割を果たしています。排気から廃熱を回収するように設計されたこの熱交換器は、畜産施設から排出される暖かくてよどんだ空気の熱エネルギーを、流入する新鮮で冷たい空気に、混合することなく伝達します。鶏舎、豚舎、その他の飼育環境では、一貫した温度管理と空気の質が重要であり、冬の間は新鮮な空気をあらかじめ温めることで暖房コストを削減し、夏の間は効果的な温度調節によって熱ストレスを緩和します。通常、アルミニウムやステンレス鋼などの耐腐食性材料で作られており、畜産環境によくある湿気とアンモニアの多い環境に耐えます。換気システムに統合することで、この熱交換器はエネルギー消費を削減するだけでなく、持続可能な農業慣行をサポートし、動物福祉と作業効率を確保します。そのアプリケーションは、費用対効果と環境責任のバランスを取ることを目指す大規模飼育事業で特に価値があります。

Air-to-Air Heat Recovery Exchanger

Fully automatic non partition air filter production line

Fully automatic non partition air filter production line

The fully automatic non partition air filter production line is a highly automated production system, typically used to produce high-performance air filters, widely used in industrial, commercial, and household air purification equipment. Its core feature is the use of a non partition design to improve the filtration efficiency of the air filter and reduce the resistance of air flow.

主な特徴:
Partition free design: Traditional air filters typically use partitions to separate the filter material layer, while partition free design can effectively reduce obstacles to air flow, thereby improving filtration efficiency and reducing energy consumption.
Fully automated operation: From raw material cutting, filter material assembly, to finished product packaging, the production line achieves full automation, reduces manual intervention, and improves production efficiency and consistency.
High precision control system: By integrating advanced automation control systems and sensors, it ensures precise control of the production process and achieves high-quality filter products.
Fast switching and flexibility: The production line supports the production of filters of different specifications and types, and can quickly switch production modes to meet the needs of different customers.
Efficient production capacity: Design efficient processes and modular systems that can meet large-scale production requirements and ensure stable product quality.

ヘルプが必要ですか?
ja日本語