Kategoriearchiv Brancheninformationen

Hersteller ZiBo QiYu

ZIBO QIYU AIR CONDITION ENERGY RECOVERY EQUIPMENT CO., LTD. Wir haben verschiedene Arten von Luft-Luft-Wärmetauschern, wie z. B. AHU, HRV, Wärmerohr-Wärmetauscher, Rotationswärmetauscher, Dampfheizschlangen und Oberflächenluftkühler.

Alle diese Produkte können individuell angepasst werden. Sie müssen mir lediglich Ihre Anforderungen mitteilen. Wir verfügen über eine professionelle Modellauswahlsoftware und können Ihnen bei der Auswahl des am besten geeigneten Modells helfen.

Wenn Sie an unseren Produkten interessiert sind, können Sie sich auf unserer Website umsehen und weitere Informationen erhalten.

Webseite:https://www.huanrexi.com

Anwendung eines Kreuzstromwärmetauschers im indirekten Verdunstungskühlsystem eines Rechenzentrums

Der Einsatz von Kreuzstromwärmetauschern in indirekten Verdunstungskühlungssystemen (IDEC) in Rechenzentren ermöglicht einen effizienten Wärmeaustausch, reduziert den Energieverbrauch und verbessert die Kühleffizienz. Hier sind die wichtigsten Funktionen und Vorteile:

  1. Grundlegendes Funktionsprinzip
    Ein Kreuzstromwärmetauscher ist ein Wärmetauscher, dessen Struktur die Kreuzung zweier Luftströme ermöglicht und gleichzeitig die physische Trennung gewährleistet. In indirekten Verdunstungskühlsystemen in Rechenzentren wird er typischerweise für den Wärmeaustausch zwischen Kühlluft und Außenluft ohne direkte Vermischung eingesetzt.
    Der Arbeitsablauf ist wie folgt:
    Die Primärluft (Rückluft des Rechenzentrums) tauscht über eine Seite des Wärmetauschers Wärme mit der Sekundärluft (externe Umgebungsluft) aus.
    Die Sekundärluft verdampft und kühlt im Befeuchtungsabschnitt ab, wodurch ihre eigene Temperatur sinkt, und absorbiert dann Wärme im Wärmetauscher, um die Primärluft zu kühlen.
    Nachdem die Primärluft abgekühlt ist, wird sie zurück ins Rechenzentrum geleitet, um die IT-Geräte zu kühlen.
    Die Sekundärluft wird schließlich ins Freie abgeleitet, ohne in das Innere des Rechenzentrums zu gelangen, wodurch die Gefahr einer Verschmutzung vermieden wird.
  2. Vorteile in Rechenzentren
    (1) Effizient und energiesparend, reduziert den Kühlbedarf
    Reduzieren Sie die Kühllast: Durch den Einsatz von Kreuzstromwärmetauschern können Rechenzentren eine externe Luftkühlung nutzen, anstatt auf herkömmliche mechanische Kühlung (wie Kompressoren) zurückzugreifen.
    Verbessern Sie den PUE (Power Usage Effectiveness): Reduzieren Sie die Betriebszeit mechanischer Kühlgeräte, senken Sie den Energieverbrauch und bringen Sie die PUE-Werte näher an den Idealzustand (unter 1,2).
    (2) Vollständig physisch isoliert, um eine Kontamination zu vermeiden
    Kreuzstromwärmetauscher verhindern, dass Außenluft direkt mit der Luft im Rechenzentrum in Kontakt kommt. So wird verhindert, dass Verschmutzung, Staub oder Feuchtigkeit die IT-Geräte beeinträchtigen. Sie eignen sich für Rechenzentren mit hohen Anforderungen an die Luftqualität.
    (3) Geeignet für verschiedene klimatische Bedingungen
    In trockenen oder warmen Klimazonen sind indirekte Verdunstungskühlsysteme besonders effektiv und können die Kühlkosten von Rechenzentren erheblich senken.
    Selbst in Gebieten mit hoher Luftfeuchtigkeit kann durch eine Optimierung des Wärmetauscherdesigns die Effizienz des Wärmeaustauschs verbessert werden.
    (4) Reduzierung des Wasserverbrauchs
    Im Vergleich zur direkten Verdunstungskühlung (DEC) erfordert die indirekte Verdunstungskühlung kein direktes Einsprühen von Wasser in die Luft des Rechenzentrums, sondern eine indirekte Kühlung über einen Wärmetauscher, wodurch der Wasserverlust reduziert wird.
  3. Anwendbare Szenarien
    Kreuzstromwärmetauscher werden häufig in den folgenden Arten von Rechenzentren eingesetzt:
    Hyperscale-Rechenzentrum: Erfordert effiziente und energiesparende Kühllösungen zur Senkung der Betriebskosten.
    Cloud-Computing-Rechenzentrum: erfordert hohe PUE-Werte und sucht nach nachhaltigeren Kühlmethoden.
    Edge-Rechenzentrum: befindet sich typischerweise in rauen Umgebungen und erfordert effiziente und wartungsarme Kühlsysteme.
  4. Herausforderung und Optimierungsplan
    Größe und Effizienz des Wärmetauschers: Größere Kreuzstromwärmetauscher können die Effizienz des Wärmeaustauschs verbessern, sie benötigen jedoch auch mehr Platz, sodass eine Optimierung des Designs erforderlich ist, beispielsweise durch die Verwendung von Wärmetauschern aus Aluminium oder Verbundwerkstoffen zur Verbesserung der Effizienz des Wärmeaustauschs.
    Ablagerungen und Wartung: Aufgrund von Feuchtigkeitsschwankungen können bei Wärmetauschern Ablagerungen auftreten, die eine regelmäßige Reinigung und die Verwendung korrosionsbeständiger Beschichtungen erfordern, um ihre Lebensdauer zu verlängern.
    Optimierung des Steuerungssystems: In Kombination mit einer intelligenten Steuerung wird der Arbeitsmodus des Wärmetauschers dynamisch an die Umgebungstemperatur, Luftfeuchtigkeit und Auslastungsbedingungen des Rechenzentrums angepasst, um die Systemanpassungsfähigkeit zu verbessern.
  5. Zukünftige Entwicklungstrends
    Neue effiziente Wärmeaustauschmaterialien, wie beispielsweise nanobeschichtete Wärmetauscher, verbessern die Wärmeaustauscheffizienz weiter.
    In Kombination mit einem intelligenten KI-Steuerungssystem wird der Wärmeaustausch dynamisch an die Echtzeitlast des Rechenzentrums angepasst.
    Kombination von Flüssigkeitskühlungstechnologie zur weiteren Verbesserung der Wärmeableitungseffizienz in Serverräumen mit hoher Dichte.

Kreuzstromwärmetauscher spielen eine wichtige Rolle in der indirekten Verdunstungskühlung von Rechenzentren. Sie sorgen für eine effiziente Wärmeübertragung, senken den Energieverbrauch, minimieren die Umweltverschmutzung und verbessern die Zuverlässigkeit der Geräte. Sie zählen derzeit zu den wichtigsten Technologien im Bereich der Rechenzentrumskühlung und eignen sich insbesondere für große, hocheffiziente Rechenzentren.

Kommerzielle Belüftung und Energierückgewinnung

Eine angemessene Raumluftqualität (IAQ) hängt von vielen Faktoren ab, die von der örtlichen Situation und dem Klima abhängen. Luft mit Staub, Pollen oder anderen Schadstoffen kann gesundheitliche Probleme wie Atemprobleme verursachen. Ein schlechtes Raumklima kann auch Gebäude beschädigen.

Kommerzielle (nicht für Wohnzwecke) Lüftungsgeräte sind in der Regel größere Geräte, die für Gebäude wie Büros, Hotels und Flughäfen konzipiert sind. Die Herausforderung besteht darin, mit möglichst geringem Energieaufwand eine angenehme Raumluftqualität zu erreichen. Dies bedeutet, dass der Druckabfall gering sein sollte (weniger Lüfterleistung erforderlich) und die Wärme-/Feuchtigkeitseffizienz hoch sein sollte (weniger Energieverbrauch für Heizung/Kühlung/Feuchtigkeitskontrolle).

Je nach geografischer Region verschiebt sich der Hauptzweck des Wärmetauschers zwischen dem Heizen oder Kühlen (und möglicherweise auch Entfeuchten) der Außenluft, bevor diese in das Gebäude gelangt.

Die Luftbehandlungseinheit (AHU) ist das Herzstück eines Belüftungssystems. Eine AHU verfügt mindestens über einen oder mehrere Ventilatoren in jedem Luftkanal, um die Luft durch die Einheit zu bewegen. Filter auf beiden Seiten entfernen Staub, Pollen usw. und schützen die Ventilatoren. Schließlich überträgt ein Wärmetauscher die benötigte Wärme oder Feuchtigkeit von der Abluft auf die Zuluft.

Die Implementierung eines Luft-Luft-Wärmetauschers ist eine hervorragende Möglichkeit, die üblicherweise als Abwärme betrachtete Wärme zu nutzen. Ein Luft-Luft-Wärmetauscher nutzt den Temperaturunterschied zwischen Zu- und Abluft, um die Effizienz des Systems zu erhöhen. Es gibt zwei Arten von Luft-Luft-Wärmetauschern: Rotations- und Plattenwärmetauscher.

Der Typ und die genaue Konfiguration hängen von der Anwendung ab. Beide Typen bestehen aus Aluminium, das über hervorragende Eigenschaften wie effiziente Wärmeübertragungsfähigkeiten und eine außergewöhnlich lange Lebensdauer verfügt. Wir bieten zahlreiche Designvariablen und Optionen für jedes Produkt, die eine perfekte Passform und Leistung in jeder AHU ermöglichen.

Indirekte Kühlung in Rechenzentren

Moderne Rechenzentren sind technologisch außerordentlich komplex und ihr sicherer und effizienter Betrieb erfordert eine kontinuierliche, sorgfältige Überwachung und Verwaltung.

Die Aufrechterhaltung der richtigen Temperatur gehört zu den wichtigsten Aufgaben von Rechenzentrumsmanagern. Steigen Temperatur und Luftfeuchtigkeit im Rechenzentrum zu stark an, kann sich Kondenswasser bilden und die darin befindlichen Maschinen beschädigen. Dies kann zu massiven Schäden und Störungen führen und muss daher unbedingt vermieden werden. Glücklicherweise stehen verschiedene Technologien zur Verfügung, die dabei helfen, die Temperatur im Rechenzentrum auf dem richtigen Niveau zu halten.

Es gibt zahlreiche Möglichkeiten, ein Rechenzentrum zu kühlen. Bei der indirekten Luftkühlung wird Außenluft verwendet. Durch den Einsatz eines Luft-Luft-Wärmetauschers wird die Außenluft in einem separaten Kreislauf gehalten und sorgt so für Kühlung, ohne in den Serverraum zu gelangen.

Indirekte Kühlmethoden haben den Vorteil, dass die Innenluft nicht mit Schadstoffen und Feuchtigkeit aus der Außenluft verunreinigt wird. Ein Wärmetauscher trennt die beiden Luftströme und leitet die Wärme von innen nach außen. Dadurch kommt es zu keiner Vermischung von Außen- und Innenluft.

Befindet sich das Rechenzentrum in einem Bereich mit konstant niedrigen Temperaturen, ist eine Trockenkühlung in der Regel ausreichend. Durch das Besprühen der Umgebungsluftseite des Wärmetauschers mit Wasser wird jedoch ein Verdunstungseffekt erzielt, der zu einer niedrigeren Raumlufttemperatur führt. Diese Methode wird als indirekte Verdunstungskühlung (IEC) bezeichnet.

IEC eignet sich ideal für warmes, trockenes Klima und bietet hervorragendes Kühlpotenzial bei niedrigen Betriebs- und Anschaffungskosten. Im Sommer sinkt die Umgebungstemperatur typischerweise um 6–8 °C (10–15 °F). IEC ermöglicht Energieeinsparungen von bis zu 281 TP3T im Vergleich zu konventioneller Freikühlung und 521 TP3T im Vergleich zu luftgekühlten Freikühlungsalternativen.

Für die Verdunstungskühlung ist ein Plattenwärmetauscher erforderlich, der hohe Effizienz mit geringem Druckabfall verbindet, zuverlässigen Korrosionsschutz bietet und zuverlässig wasserdicht ist. Kreuzstromwärmetauscher erfüllen all diese Anforderungen und bieten gleichzeitig eine hervorragende Kühlleistung.

Unsere Kreuzstromwärmetauscher, insbesondere mit Verdunstungskühltechnologie, bieten eine effiziente, kostengünstige und umweltfreundliche Alternative zu herkömmlichen Kühlmethoden.

Indirect Cooling in Data Centers

A rapid method for eliminating white smoke

The principle of using a condenser for dehumidification to eliminate white smoke is mainly based on the physical changes of water vapor in the flue gas. The condenser cools the flue gas with low-temperature water or air, gradually reducing its temperature, and the water vapor inside begins to condense into small water droplets. These small water droplets gather inside the condenser and eventually form liquid water, which is then removed through drainage pipes. Dehumidification through a condenser is an effective technical means to eliminate white smoke. It can not only reduce visual pollution, but also help improve the operational efficiency and energy-saving effect of environmental protection equipment. We can provide you with a suitable dehumidification solution for flue gas, which is both economical and environmentally friendly. Welcome to consult us via email.

Efficient equipment for removing industrial flue gas

Industrial flue gas desulfurization equipment with heat exchange technology to reduce the water vapor content in flue gas, thereby eliminating the white smoke plume generated during chimney emissions. The following are several common methods for flue gas whitening:

Flue gas heating technology: The desulfurized wet flue gas is heat exchanged with industrial high-temperature flue gas through a heat exchanger to increase the emission temperature of the flue gas, thereby reducing the relative humidity of the flue gas and avoiding the condensation of water vapor to form white smoke. This method can effectively reduce the generation of white smoke, but it requires a certain amount of energy to heat the smoke.

Flue gas condensation technology: First, partially condense the water vapor in the saturated flue gas, and then heat the flue gas. This method reduces the formation of white smoke by lowering the moisture content in the flue gas, while also recovering some water resources.

MGGH technology: Install flue gas cooling heat exchangers before and after electrostatic precipitator, install flue gas heating heat exchangers after desulfurization, and set up a heat medium water circulation system. This technology extracts the heat from the original smoke to heat the clean smoke, which usually needs to be raised to 75-80 ℃ to avoid the production of white smoke.

In summary, these methods each have their own advantages and disadvantages, and are suitable for different industrial environments and needs. When selecting specific flue gas desulfurization technologies, factors such as process conditions, waste heat resources, and investment requirements need to be considered. Welcome to consult us via email.

Smoke Scrubber :Efficient removal of white smoke with physical methods

The smoke scrubber condenses water vapor in the flue gas into liquid through a condenser, and gas pollutants adhere to the condensed liquid before being discharged through exhaust gas. This technology does not require a collector, but relies on the precipitated liquid to carry away pollutants, thereby reducing operating costs and minimizing the environmental pollution caused by white smoke.

The white smoke removal equipment produced by our company has a compact design layout, flexible installation, and easy operation, which can efficiently and quickly solve the white smoke generated in industrial production. Mainly used for desulfurization and whitening of flue gas from coal-fired boilers, gas-fired boilers, power plants, metallurgy and other industries.

Energiesparende Geräte zur Wärmeableitung in Computerräumen

The heat exchange core of the computer room's heat dissipation energy-saving device is an efficient heat dissipation solution specifically designed for data centers or server rooms. By optimizing heat exchange efficiency, energy consumption can be reduced and system performance can be improved. The heat exchanger produced by our company uses hydrophilic aluminum foil as the heat exchange material, and the surface has been specially treated to have excellent hydrophilicity, which can promote the rapid formation and removal of condensed water. During the heat exchange process, the hydrophilic layer can effectively increase the heat exchange area and improve the heat exchange efficiency. Adopting a multi-layer microchannel design increases the contact area between the fluid and the metal wall, thereby improving the heat transfer efficiency. Greatly improved the energy efficiency ratio of data centers and reduced operating costs.

Wärmerückgewinnungstechnologie für Klimaanlagen in Einkaufszentren

In today's pursuit of high-quality shopping experience, we not only focus on the richness and diversity of products, but also care about the comfort and sustainability of the shopping environment.
The core of our company's air conditioning system heat recovery technology lies in the perfect combination of high-efficiency heat exchanger design and intelligent control system. It can efficiently collect the waste heat generated during the operation of air conditioning and convert it into valuable energy for winter heating, domestic hot water, and even pre cooling fresh air in shopping malls.
This process does not require additional energy consumption and can achieve internal energy recycling, significantly reducing the overall energy consumption cost of the mall. And it can automatically adjust the operating status and heat recovery intensity of the air conditioner. This means that whether it's scorching summer or cold winter, the mall can ensure constant temperature and humidity, providing customers with the most comfortable shopping environment while achieving the best energy-saving effect. Welcome to consult via email.

Energy saving scheme for heat recovery of central air conditioning system

In the operation of central air conditioning systems, we can adopt high-efficiency heat exchangers for energy-saving renovation plans, and can choose plate heat exchangers or microchannel heat exchangers with high heat transfer efficiency and low fluid resistance. Our heat exchanger has a larger heat transfer area and more efficient heat transfer performance, which can reduce energy consumption under the same heat transfer conditions. Install a waste heat recovery device in the central air conditioning system to recover and reuse the emitted heat. It can also be combined with heat pump technology, which is an efficient way of transferring heat energy by consuming a small amount of electricity or fuel energy to transfer the heat from a low-temperature heat source to a high-temperature heat source. The application of heat pump technology in central air conditioning systems can improve the coefficient of performance (COP) of the system and reduce energy consumption.

Benötigen Sie Hilfe?
de_DEDeutsch