Kategoriearchiv Trocknungswärmerückgewinnung

Wie funktioniert ein Luft-Luft-Wärmetauscher bei der Wärmerückgewinnung beim Sprühtrocknen?

In Wärmerückgewinnung bei der Sprühtrocknung, ein Luft-Luft-Wärmetauscher Dient dazu, die Abwärme der heißen, feuchten Abluft aus der Trockenkammer zurückzugewinnen und sie der einströmenden frischen (aber kühleren) Luft zuzuführen. Dadurch wird der Energiebedarf des Trocknungsprozesses deutlich reduziert.

So funktioniert es:

  1. Abluftsammlung:

    • Nach der Sprühtrocknung enthält die heiße Abluft (oft 80–120 °C) sowohl Wärme als auch Wasserdampf.

    • Diese Luft wird aus der Kammer abgesaugt und dem Wärmetauscher zugeführt.

  2. Wärmeaustauschprozess:

    • Die heiße Abluft strömt durch eine Seite des Wärmetauschers (der aufgrund möglicher Klebrigkeit oder leichter Säure oft aus korrosionsbeständigen Materialien besteht).

    • Gleichzeitig strömt auf der anderen Seite kühle Umgebungsluft in einem separaten Kanal (Gegenstrom- oder Kreuzstromanordnung).

    • Wärme wird übertragen durch die Wärmetauscherwände von der heißen zur kühlen Seite, ohne Mischen die Luftströme.

  3. Vorwärmen der Zuluft:

    • Die einströmende Frischluft wird vorgewärmt, bevor sie in den Hauptheizer (Gasbrenner oder Dampfheizregister) des Sprühtrockners eintritt.

    • Das senkt den benötigten Kraftstoff- oder Energiebedarf um die gewünschte Trocknungstemperatur zu erreichen (typischerweise 150–250 °C am Einlass).

  4. Abluftnachbehandlung (optional):

    • Nach der Wärmeabfuhr kann die kühlere Abluft gefiltert oder von Staub und Feuchtigkeit befreit werden, bevor sie freigesetzt oder weiterverwendet wird.

Vorteile:

  • Energieeinsparungen: Reduziert den Brennstoff- oder Dampfverbrauch je nach Konfiguration um 10–30%.

  • Niedrigere Betriebskosten: Geringerer Energieaufwand reduziert die Energiekosten.

  • Umweltauswirkungen: Reduziert CO₂-Emissionen durch Verbesserung der Energieeffizienz.

  • Temperaturstabilität: Hilft dabei, eine gleichbleibende Trocknungsleistung zu gewährleisten.

Wie funktioniert ein Luft-Luft-Wärmetauscher bei der NMP-Wärmerückgewinnung?

Ein Luft-Luft-Wärmetauscher in einer NMP-Wärmerückgewinnungsanlage überträgt thermische Energie zwischen einem heißen, mit NMP beladenen Abluftstrom aus einem industriellen Prozess und einem kühleren, einströmenden Frischluftstrom und verbessert so die Energieeffizienz in Branchen wie der Batterieherstellung.

Die heiße Abluft (z. B. 80–160 °C) und die kühlere Frischluft strömen durch getrennte Kanäle oder über eine wärmeleitende Oberfläche (z. B. Platten, Rohre oder ein rotierendes Rad), ohne sich zu vermischen. Die Wärmeübertragung von der heißen Abluft auf die kühlere Frischluft erfolgt durch fühlbare Wärmeübertragung. Gängige Typen sind Plattenwärmetauscher, Rotationswärmetauscher und Wärmerohrwärmetauscher.

Spezielle NMP-Konstruktionen verwenden korrosionsbeständige Materialien wie Edelstahl oder glasfaserverstärkten Kunststoff, um der aggressiven Wirkung von NMP standzuhalten. Größere Lamellenabstände oder CIP-Reinigungssysteme verhindern Ablagerungen durch Staub oder Rückstände. Kondensation wird so abgeleitet, dass Verstopfungen oder Korrosion vermieden werden.

Die heiße Abluft überträgt Wärme auf die Frischluft, erwärmt diese vor (z. B. von 20 °C auf 60–80 °C) und reduziert so den Energiebedarf nachfolgender Prozesse. Die abgekühlte Abluft (z. B. 30–50 °C) wird einem NMP-Rückgewinnungssystem (z. B. Kondensation oder Adsorption) zugeführt, um das Lösungsmittel aufzufangen und wiederzuverwerten. Der Wirkungsgrad der Wärmerückgewinnung liegt je nach Ausführung zwischen 60 und 951 TP3T.

Dies reduziert den Energieverbrauch um 15–301 TP3T, senkt die Treibhausgasemissionen und verbessert die NMP-Rückgewinnung durch Kühlung der Abluft zur einfacheren Lösungsmittelabscheidung. Herausforderungen wie Ablagerungen werden durch größere Spaltbreiten, extrahierbare Elemente oder Reinigungssysteme bewältigt, während eine robuste Abdichtung Kreuzkontaminationen verhindert.

In einer Batteriefabrik erwärmt ein Plattenwärmetauscher Frischluft von 20 °C auf 90 °C mithilfe von 120 °C heißer Abluft vor, wodurch der Energiebedarf des Ofens um ca. 701 TP³T reduziert wird. Die abgekühlte Abluft wird aufbereitet, um 951 TP³T NMP zurückzugewinnen.

Wie funktioniert ein Luft-Luft-Wärmetauscher bei der Holztrocknung?

Ein Luft-Luft-Wärmetauscher in der Holztrocknung überträgt Wärme zwischen zwei Luftströmen, ohne diese zu vermischen. Dadurch werden die Energieeffizienz optimiert und die Trocknungsbedingungen kontrolliert. So funktioniert es:

  1. Zweck der HolztrocknungDie Holztrocknung (Trocknungskammertrocknung) erfordert eine präzise Temperatur- und Feuchtigkeitskontrolle, um dem Holz Feuchtigkeit zu entziehen, ohne dass Schäden wie Risse oder Verformungen entstehen. Der Wärmetauscher gewinnt Wärme aus der Abluft (die die Trockenkammer verlässt) zurück und überträgt sie auf die einströmende Frischluft. Dadurch werden Energiekosten gesenkt und gleichmäßige Trocknungsbedingungen gewährleistet.
  2. Komponenten:
    • Eine Wärmetauschereinheit, typischerweise bestehend aus einer Reihe von Metallplatten, Rohren oder Rippen.
    • Zwei getrennte Luftwege: einer für die heiße, feuchte Abluft aus dem Brennofen und einer für die kühlere, frische Zuluft.
    • Ventilatoren oder Gebläse, um Luft durch das System zu bewegen.
  3. Funktionsmechanismus:
    • AbluftHeiße, feuchte Luft aus dem Brennofen (z. B. 50–80 °C) strömt durch eine Seite des Wärmetauschers. Diese Luft transportiert Wärmeenergie aus dem Trocknungsprozess.
    • WärmeübertragungDie Wärme der Abluft wird durch die dünnen Metallwände des Wärmetauschers an die kühlere, einströmende Frischluft (z. B. 20–30 °C) auf der anderen Seite abgegeben. Das Metall gewährleistet einen effizienten Wärmeaustausch, ohne dass sich die beiden Luftströme vermischen.
    • FrischluftheizungDie einströmende Luft nimmt die Wärme auf und erwärmt sich, bevor sie in den Ofen eintritt. Diese vorgewärmte Luft reduziert den Energiebedarf zum Aufheizen des Ofens auf die gewünschte Trocknungstemperatur.
    • FeuchtigkeitsabscheidungDie nun kühlere Abluft kann einen Teil ihrer Feuchtigkeit kondensieren lassen, die dann abgelassen werden kann, wodurch die Luftfeuchtigkeit im Brennofen reguliert wird.
  4. Arten von Wärmetauschern:
    • Plattenwärmetauscher: Durch die Verwendung von Flachplatten zur Trennung der Luftströme wird ein hoher Wirkungsgrad erzielt.
    • Rohrwärmetauscher: Verwenden Sie Schläuche für den Luftstrom, langlebig für Hochtemperaturanwendungen.
    • Wärmerohr-Wärmetauscher: Verwendung von abgedichteten Rohren mit einem Arbeitsmedium zur Wärmeübertragung, effektiv für große Öfen.
  5. Vorteile bei der Holztrocknung:
    • Energieeffizienz: Gewinnt 50–80% Wärme aus der Abluft zurück und senkt so die Brennstoff- oder Stromkosten.
    • Gleichmäßige TrocknungVorgewärmte Luft sorgt für stabile Ofentemperaturen und verbessert so die Holzqualität.
    • UmweltauswirkungenReduziert Energieverbrauch und Emissionen.
  6. Herausforderungen:
    • WartungAuf den Oberflächen des Wärmetauschers können sich Staub oder Harz aus Holz ansammeln, was eine regelmäßige Reinigung erforderlich macht.
    • AnfangskostenDie Installation kann teuer sein, wird aber durch langfristige Energieeinsparungen ausgeglichen.
    • FeuchtigkeitsregelungDas System muss ein Gleichgewicht zwischen Wärmerückgewinnung und angemessener Feuchtigkeitsabfuhr herstellen, um übermäßig feuchte Bedingungen zu vermeiden.

Zusammenfassend lässt sich sagen, dass ein Luft-Luft-Wärmetauscher in der Holztrocknung die Wärme der Abluft nutzt, um die Zuluft vorzuwärmen. Dadurch wird die Energieeffizienz verbessert und optimale Trocknungsbedingungen werden aufrechterhalten. Er ist eine entscheidende Komponente moderner Trockenkammeranlagen für eine nachhaltige und qualitativ hochwertige Holzverarbeitung.

Wie funktioniert ein Wärmetauscher in einem Kessel?

A Wärmetauscher in einem Kessel Dabei wird Wärme von den Verbrennungsgasen auf das im System zirkulierende Wasser übertragen. So funktioniert es Schritt für Schritt:

  1. Es findet eine Verbrennung stattDer Kessel verbrennt einen Brennstoff (wie Erdgas, Öl oder Strom) und erzeugt dabei heiße Verbrennungsgase.

  2. Wärmeübertragung zum WärmetauscherDiese heißen Gase strömen durch einen Wärmetauscher – typischerweise ein spiralförmiges oder beripptes Metallrohr oder eine Reihe von Platten aus Stahl, Kupfer oder Aluminium.

  3. WasserzirkulationKaltes Wasser aus der Zentralheizungsanlage wird durch den Wärmetauscher gepumpt.

  4. WärmeaufnahmeWenn die heißen Gase über die Oberflächen des Wärmetauschers strömen, wird Wärme durch das Metall in das darin befindliche Wasser geleitet.

  5. WarmwasserlieferungDas nun erwärmte Wasser wird je nach Kesseltyp (Kombikessel oder Systemkessel) durch Heizkörper oder zu Warmwasserhähnen geleitet.

  6. GasausstoßDie abgekühlten Verbrennungsgase werden über einen Abzug abgeleitet.

In Brennwertkessel, da ist ein zusätzliche Stufe:

  • Nach dem anfänglichen Wärmeaustausch wird die verbleibende Wärme in den Abgasen genutzt, um Vorwärmen des einströmenden kalten WassersDadurch wird noch mehr Energie gewonnen und die Effizienz gesteigert. Dieser Prozess erzeugt oft Kondensat (Wasser), das aus dem Kessel abgelassen wird.

Wärmerückgewinnungsgerät zum Weißen und Entnebeln von Abgasen aus der Papierfabriktrocknung

Die während des Produktionsprozesses von Papierfabriken entstehenden Abgase zeichnen sich durch hohe Temperaturen, hohe Luftfeuchtigkeit und unangenehmen Geruch aus. Direkt abgeleitet belasten sie nicht nur die Umwelt, sondern verschwenden auch große Mengen an Wärmeenergie. Um dieses Problem zu lösen, hat unser Unternehmen ein Gerät zur Wärmerückgewinnung zum Bleichen und Entnebeln von Abgasen in Papierfabriken entwickelt.

Heat recovery device for whitening and defogging exhaust gas from paper mill drying
Funktionsprinzip:
Wärmeaustauschprinzip: Nach dem Prinzip eines Plattenwärmetauschers wird die Wärme über eine Reihe paralleler Metallplatten ausgetauscht. Hochtemperaturabgase strömen durch eine Seite der Platte, während Frischluft durch die andere Seite strömt. Dabei wird Wärme durch die Plattenwand übertragen, um eine Abwärmerückgewinnung zu erreichen.
Kühl- und Heizprozess: Zunächst wird das Hochtemperaturabgas auf eine Temperatur nahe der Umgebungstemperatur abgekühlt und dann durch einen Nacherhitzer erhitzt, um die Abgastemperatur über die Umgebungstemperatur zu bringen und so das Phänomen des weißen Nebels zu beseitigen.
Technische Vorteile:
Effizient und energiesparend: Durch die Rückgewinnung der Abwärme aus dem Abgas werden Energieverbrauch und Betriebskosten deutlich gesenkt.
Umweltschutz und Emissionsreduzierung: Wirksame Entfernung von Feuchtigkeit und Geruchsbestandteilen aus Abgasen, wodurch die Umweltverschmutzung reduziert wird.
Kompakte Struktur: geringe Größe, geringes Gewicht, einfache Installation und geringer Platzbedarf.
Anwendungsszenarien:
Papierindustrie: Wärmerückgewinnung während des Papiertrocknungsprozesses, um die in den Trockner eintretende Luft vorzuwärmen, die Trocknungseffizienz zu verbessern und den Kraftstoffverbrauch zu senken.
Lebensmittelindustrie: Wiederverwendung der Abwärme aus dem Trocknungsprozess von Getreide, Gemüse, Obst usw. zum Vorwärmen von Frischluft und zur Verbesserung der Trocknungseffizienz.
Chemische Industrie: Recycling von Hochtemperaturabgasen aus dem Trocknungsprozess chemischer Produkte zum Erhitzen anderer Prozessgase oder Luft.
Textilindustrie: Wird zur Rückgewinnung von Abwärme während des Trocknungsprozesses von Textilien verwendet, wodurch die Trocknungseffizienz verbessert und Energie gespart wird.

Wärmepumpen-Trocknungssystem mit Wärmerückgewinnung

Mit der weiteren Entwicklung der chinesischen Wirtschaft wird der Einsatz grüner Energie immer umfassender werden. Wärmepumpen-Entfeuchtungstrockner mit Plattenwärmerückgewinnung haben sich in den letzten Jahren rasant entwickelt und finden breite Anwendung im Jangtse-Becken, in Südwestchina und Südchina.

Die Anlage nutzt das inverse Cano-Prinzip in Kombination mit effizienter Wärmerückgewinnungstechnologie. Während des gesamten Trocknungs- und Entfeuchtungsprozesses wird die feuchte Luft in der Kammer über einen Kanal mit dem Hauptgerät verbunden. Dort wird die sensible und latente Wärme der warmen, feuchten Luft mittels eines Wärmekollektors zurückgewonnen. Durch die thermische Wiederverwertung werden die Leistung des Hauptgeräts, die Trocknungsgeschwindigkeit und die Materialqualität deutlich verbessert. Die Abwärme trägt nicht nur zur Effizienzsteigerung der Anlage bei, sondern reduziert auch die thermische Belastung der Umwelt und mildert den städtischen Wärmeinseleffekt.

Das Wärmepumpen-Trocknungssystem mit Wärmerückgewinnung findet nicht nur in Schlammtrocknungsanlagen Anwendung, sondern auch in vielen anderen Trocknungsbranchen. Es zeichnet sich durch hohe Trocknungsqualität und einen hohen Automatisierungsgrad aus und ist die optimale Lösung für Energieeinsparung, Nachhaltigkeit und Umweltschutz in der modernen Trocknungsindustrie.

Funktionsprinzip von Wärmepumpentrocknern mit und ohne Wärmerückgewinnung

Beim Trocknen der Luft im Wärmepumpentrockner bildet die Luft einen geschlossenen Kreislauf zwischen Trockenkammer und Gerät. Die Wärmeaufnahme des Verdampfers dient der Kühlung und Entfeuchtung der warmen, feuchten Luft, während die Wärmeabgabe des Kondensators die trockene, kalte Luft erwärmt. Dadurch wird ein Kreislauf aus Entfeuchtung und Trocknung erreicht.

Der Hauptunterschied zwischen Wärmepumpentrocknern mit und ohne Wärmerückgewinnung liegt in den unterschiedlichen Luftzirkulationsmodi. Erstere sind mit einem Plattenwärmetauscher ausgestattet, der im Luftzirkulationsprozess die Vorkühlung und Vorwärmung übernimmt, die Belastung des Kompressors reduziert und somit Energie spart.

Betriebsmodus des Wärmepumpen-Trocknungssystems

Energiesparanalyse der Wärmerückgewinnung

Nehmen wir als Beispiel einen Wärmepumpentrockner: Die Trocknungslufttemperatur ist auf 65 °C ausgelegt, die relative Luftfeuchtigkeit beträgt 301 % (TP3T), die Temperatur der Umluft liegt bei 65 °C, die Temperatur vor dem Durchströmen des Verdampfers ebenfalls bei 65 °C und die Temperatur nach der Verdampfungskühlung bei 35 °C. Der Kondensator muss die Luft von 35 °C auf 65 °C erwärmen, bevor er einsatzbereit ist.

Nach der Kombination mit dem Wärmetauscher BXB500-400-3.5 nimmt die 35 °C warme Rückluft nach dem Durchströmen des Plattenwärmetauschers Wärme aus der Abluft auf und erwärmt sich auf 46,6 °C. Der Kondensator muss die Luft lediglich von 46,6 °C auf 65 °C erwärmen, um die Betriebsanforderungen zu erfüllen. Dadurch wird die Belastung von Verdampfer und Kondensator erheblich reduziert, was wiederum den Energieverbrauch der gesamten Anlage senkt und somit Energie spart.

Energiesparanalyse der Wärmerückgewinnung


Auswahl und Wirtschaftlichkeitsberechnung

Wir freuen uns, Ihnen die gemeinsam mit der Tsinghua-Universität entwickelte Berechnungs- und Auswahlsoftware für Plattenwärmetauscher vorzustellen. Bei Interesse kontaktieren Sie uns bitte!

Auslegung eines Trocknungs-, Entfeuchtungs- und Wärmerückgewinnungssystems

Mit der rasanten Entwicklung der Fertigungsindustrie müssen viele Produkte während des Produktionsprozesses getrocknet und entfeuchtet werden. Diese Prozesse erfordern nicht nur eine effiziente Feuchtigkeitsentfernung, sondern auch die Erhaltung der Eigenschaften und Qualität des Materials. Herkömmliche Trocknungs- und Entfeuchtungsmethoden verbrauchen oft viel Energie und können negative Auswirkungen auf die Umwelt haben, beispielsweise durch die Emission von Treibhausgasen und anderen Schadstoffen.


Durch den Einsatz effizienter Wärmerückgewinnungstechnologie kann Abwärme optimal zurückgewonnen und wiederverwendet werden, um den Energieverbrauch zu senken. Wärmerückgewinnungstechnologie wird in zahlreichen Branchen eingesetzt, um die Energieeffizienz zu verbessern und die Betriebskosten zu senken. Im Bereich der Trocknung und Entfeuchtung ist das Potenzial dieser Technologie jedoch noch nicht ausgeschöpft. Wir entwickeln ein Wärmerückgewinnungssystem, das Ihren spezifischen Produktionsanforderungen und den Gegebenheiten vor Ort entspricht. Wir planen das System sorgfältig für Sie, um minimale Wärmeverluste bei der Umwandlung und Übertragung zu gewährleisten. Anfragen sind gerne per E-Mail möglich.

Lüftungswärmetauscher für den Gemüse-Niedertemperaturverarbeitungsbereich und den Supermarkt-Sortierbereich

Bei der Verarbeitung von Gemüse bei niedrigen Temperaturen besteht die Hauptfunktion des Lüftungswärmetauschers darin, eine geeignete Temperatur in der Verarbeitungsumgebung sicherzustellen, um die Frische und Qualität des Gemüses zu erhalten. Lüftungswärmetauscher nutzen effiziente Wärmeaustauschtechnologie, um die Wärme im Innenbereich abzuleiten und gleichzeitig kalte oder gekühlte Außenluft für eine effektive Temperaturregelung einzuführen.
Darüber hinaus muss beim Lüftungswärmetauscher im Niedertemperatur-Gemüseverarbeitungsbereich auch die Feuchtigkeitskontrolle berücksichtigt werden, da übermäßige Feuchtigkeit zu Gemüsefäule führen kann. Daher sind einige Lüftungswärmetauscher auch mit Feuchtigkeitsregulierungsfunktionen ausgestattet, um sicherzustellen, dass die Luftfeuchtigkeit in der Verarbeitungsumgebung in einem angemessenen Bereich bleibt.
Der Sortierbereich eines Supermarkts oder Einkaufszentrums ist für das Sortieren, Verpacken und Ausliefern von Waren zuständig. Die Hauptfunktion des Lüftungswärmetauschers in diesem Bereich besteht darin, Frischluft zuzuführen und trübe Raumluft sowie überschüssige Wärme abzuführen.
Der Lüftungswärmetauscher im Sortierbereich von Supermärkten verfügt in der Regel über ein großes Luftvolumen und eine effiziente Wärmeaustauschleistung, um den Anforderungen großer Räume und eines hohen Fußgängeraufkommens gerecht zu werden. Gleichzeitig müssen sie leicht zu warten und zu reinigen sein, um einen langfristig stabilen Betrieb zu gewährleisten.
Ob in der Gemüseverarbeitung mit niedrigen Temperaturen oder im Sortierbereich eines Supermarkts – Lüftungswärmetauscher sind unverzichtbare und wichtige Geräte. Durch effiziente Klimatisierung und Temperaturregelung sorgen sie für ein angenehmes und gesundes Arbeitsumfeld in diesen Bereichen und tragen so zur Verbesserung der Produktionseffizienz und Produktqualität bei.
Unser Kreuz-Gegenstrom-Plattenwärmetauscher besteht aus hochwertiger hydrophiler Aluminiumfolie, Epoxidharz-Aluminiumfolie, Edelstahl, Polycarbonat und anderen Materialien. Die Luft strömt teilweise im Kreuzstrom und teilweise im Relativstrom, um die Übertragung von Gerüchen und Feuchtigkeit zu vermeiden. Wird zur Energierückgewinnung in zivilen und gewerblichen Lüftungssystemen sowie in industriellen Lüftungssystemen eingesetzt. Schnelle Wärmeleitung, keine Sekundärverschmutzung, guter Wärmeübertragungseffekt.

Trockenraum für Gemüse, Tee, Bohnen, Luftwärmetauscher zur Entfeuchtung und Feuchtigkeitsentfernung

Während des Trocknungsprozesses landwirtschaftlicher Produkte wie Gemüse, Tee und Bohnen sind effiziente Entfeuchtungs- und Entfeuchtungssysteme erforderlich, um die Qualität und Effizienz des Trocknungsprozesses sicherzustellen. Der Gaswärmetauscher spielt in diesem Prozess eine entscheidende Rolle. Im Folgenden finden Sie eine detaillierte Einführung in das Entfeuchtungs- und Entfeuchtungssystem von Trockenräumen für Gemüse, Tee und Bohnen.

Entfeuchtungsprozess:
Die feuchte und heiße Luft im Trockenraum wird durch den Abluftventilator abgesaugt und tauscht beim Durchlaufen des Luft-Luft-Wärmetauschers Wärme mit der einströmenden trockenen Luft aus.
Nach dem Durchlaufen des Wärmetauschers sinkt die Temperatur der abgeleiteten feuchten und heißen Luft, und der Wasserdampf kondensiert zu flüssigem Wasser und wird abgeleitet.
Die einströmende Trockenluft wird durch einen Wärmetauscher vorgewärmt und gelangt in den Trockenraum, wodurch die Trocknungseffizienz verbessert wird.

Anwendungsszenarien
Trocknen von Gemüse: Durch die Kontrolle von Temperatur und Luftfeuchtigkeit werden Farbe und Nährstoffe des getrockneten Gemüses (z. B. Chilischoten, Karotten, Kohl usw.) nicht zerstört.
Teetrocknung: Bei Grüntee, Schwarztee, Oolong-Tee etc. bleiben Aroma und Qualität des Tees durch entsprechende Temperatur- und Feuchtigkeitskontrolle erhalten.
Trocknen von Hülsenfrüchten: wie Sojabohnen, Mungobohnen, rote Bohnen usw. werden gleichmäßig mit Heißluft getrocknet, um die Trockenheit und Lagerqualität der Bohnen sicherzustellen.

Der Einsatz von Gas-Luft-Wärmetauschern in Trockenräumen für Gemüse, Tee und Bohnen hat die Energieeffizienz und Produktqualität des Trocknungsprozesses durch effiziente Entfeuchtungs- und Entfeuchtungsfunktionen verbessert. Eine vernünftige Konstruktion und Verwendung kann den Energieverbrauch und die Betriebskosten erheblich senken und ist gleichzeitig umweltfreundlich, was es zu einem unverzichtbaren Bestandteil der modernen Trocknungstechnologie macht.

Trocknungs-Abwärmerückgewinnung

Das Wärmerückgewinnungssystem für die Trocknung mit Wärmepumpe kann zum Trocknen von Lebensmitteln, medizinischen Materialien, Tabak, Holz und Schlamm eingesetzt werden. Es zeichnet sich durch eine gute Trocknungsqualität und einen hohen Automatisierungsgrad aus und ist das beste und bevorzugte Produkt für Energieeinsparung, Umweltfreundlichkeit und Umweltschutz in der modernen Trocknungsindustrie.

Das Gerät nutzt das umgekehrte Carnot-Prinzip und eine effiziente Wärmerückgewinnungstechnologie. Während des gesamten Trocknungs- und Entfeuchtungsprozesses ist die feuchte Luft im Trockenraum über einen Rückluftkanal mit dem Hauptgerät verbunden. Die fühlbare und latente Wärme der feuchten Luft wird mithilfe eines Wärmerückgewinnungsgeräts mit fühlbarer Wärmeplatte zur Wärmerückgewinnung und -wiederverwendung zurückgewonnen, wodurch die Leistung des Hauptgeräts, die Trocknungsgeschwindigkeit und die Materialqualität erheblich verbessert werden.

Benötigen Sie Hilfe?
de_DEDeutsch