Архив категорий Теплообменник с перекрестным потоком

как работает теплообменник с перекрестным током

А теплообменник с перекрестным потоком Принцип работы основан на том, что две жидкости движутся под прямым углом друг к другу (перпендикулярно), обычно одна из них протекает по трубкам, а другая — по внешней поверхности трубок. Ключевой принцип заключается в передаче тепла от одной жидкости к другой через стенки трубок. Вот пошаговое описание принципа работы:

Компоненты:

  1. Сторона трубки: Одна из жидкостей течет по трубкам.
  2. Сторона оболочки: Другая жидкость течет по трубкам, через трубный пучок, в направлении, перпендикулярном потоку жидкости внутри трубок.

Рабочий процесс:

  1. Входное отверстие для жидкости: Обе жидкости (горячая и холодная) поступают в теплообменник через разные входы. Одна жидкость (скажем, горячая) поступает по трубкам, а другая (холодная) — в пространство за трубками.
  2. Поток жидкости:

    • Жидкость, протекающая внутри трубок, движется по прямой или слегка изогнутой траектории.
    • Жидкость, протекающая снаружи трубок, пересекает их перпендикулярно. Путь этой жидкости может быть как перекрёстным (непосредственно поперек трубок), так и иметь более сложную конфигурацию, например, комбинацию перекрёстного и противотока.

  3. Передача тепла:

    • Тепло от горячей жидкости передается стенкам трубок, а затем холодной жидкости, протекающей по трубкам.
    • Эффективность теплопередачи зависит от разницы температур между двумя жидкостями. Чем больше разница температур, тем эффективнее теплопередача.

  4. Выход: После теплопередачи более холодная горячая жидкость выходит через одно отверстие, а более тёплая холодная жидкость — через другое. Процесс теплообмена приводит к изменению температуры обеих жидкостей при их прохождении через теплообменник.

Варианты дизайна:

  • Однопроходный поперечный поток: Одна жидкость течет в одном направлении по трубкам, а другая жидкость движется по трубкам.
  • Многоходовой поперечный поток: Жидкость внутри трубок может протекать в несколько проходов, что увеличивает время контакта с жидкостью снаружи и улучшает теплопередачу.

Соображения эффективности:

  • Перекрёстноточные теплообменники, как правило, менее эффективны, чем противоточные, поскольку температурный градиент между двумя средами уменьшается по длине теплообменника. В противоточном теплообменнике жидкости поддерживают более постоянную разность температур, что повышает эффективность теплопередачи.
  • Однако теплообменники с перекрестным потоком проще в проектировании и часто используются в ситуациях, когда пространство ограничено или когда необходимо разделить жидкости (например, в теплообменниках типа «воздух-воздух»).

Приложения:

  • Теплообменники с воздушным охлаждением (например, в системах отопления, вентиляции и кондиционирования воздуха или автомобильных радиаторах).
  • Охлаждение электронного оборудования.
  • Теплообменники для систем вентиляции.

Таким образом, хотя конструкции с перекрестным током не столь эффективны с точки зрения тепловой эффективности, как противоточные теплообменники, они универсальны и широко используются в случаях, когда важны простота или экономия пространства.

температурный профиль для теплообменника с перекрестным током

Вот разбивка температурный профиль для теплообменник с перекрестным током, особенно когда обе жидкости не смешаны:


🔥 Теплообменник с перекрестным потоком – обе жидкости не смешиваются

➤ Организация потока:

  • Одна жидкость течет горизонтально (например, горячая жидкость в трубках).
  • Другой поток движется вертикально (например, холодный воздух по трубкам).
  • Смешивание жидкостей внутри или между ними не допускается.


📈 Описание профиля температуры:

▪ Горячая жидкость:

  • Температура на входе: Высокий.
  • По мере того, как он течет, он теряет тепло к холодной жидкости.
  • Температура на выходе: Ниже, чем на входе, но неравномерно по всему теплообменнику из-за разного времени контакта.

▪ Холодная жидкость:

  • Температура на входе: Низкий.
  • Получает тепло, протекая по горячим трубкам.
  • Температура на выходе: Выше, но также варьируется в зависимости от обменника.

🌀 Из-за перекрёстного потока и отсутствия смешивания:

  • Каждая точка на обменнике видит разный температурный градиент, в зависимости от того, как долго каждая жидкость находилась в контакте с поверхностью.
  • Распределение температуры нелинейный и более сложны, чем в противоточных или параллельноточных теплообменниках.


📊 Типичный температурный профиль (схематическое изображение):

                ↑ Холодная жидкость в

Высокий │ ┌──────────────┐
Темп │ │ │
│ │ │ → Горячая жидкость внутри (справа)
│ │ │
↓ └──────────────┘
Выход холодной жидкости ← Выход горячей жидкости

⬇ Температурные кривые:

  • Холодная жидкость постепенно нагревается — кривая начинается низко и идет дугой вверх.
  • Горячая жидкость остывает — начинается высоко и опускается вниз.
  • Кривые не параллельно, и не симметричный из-за геометрии поперечного потока и переменной скорости теплообмена.


🔍 Эффективность:

  • Эффективность зависит от коэффициент теплоемкости и NTU (количество единиц передачи).
  • В целом менее эффективный чем противоток, но более эффективно чем параллельный поток.

теплообменник с перекрестным током, в котором обе жидкости не смешиваются

А теплообменник с перекрестным током, в котором обе жидкости не смешиваются относится к типу теплообменника, в котором две жидкости (горячая и холодная) текут перпендикулярно (под углом 90°) друг к другу, и ни одна жидкость не смешивается внутри или с другой. Такая конфигурация распространена в таких приложениях, как рекуперация тепла воздух-воздух или автомобильные радиаторы.

Основные характеристики:

  • Поперечный поток: Две жидкости движутся под прямым углом друг к другу.
  • Несмешанные жидкости: Как горячая, так и холодная жидкости ограничиваются соответствующими им проточными каналами с помощью сплошных стенок или ребер, что предотвращает смешивание.
  • Передача тепла: Происходит через твердую стенку или поверхность, разделяющую жидкости.

Строительство:

Обычно включает в себя:

Закрытые каналы для протекания второй жидкости (например, воды или хладагента) внутри трубок.

Трубы или оребренные поверхности где по трубкам течет одна жидкость (например, воздух).

Распространенные применения:

  • Радиаторы в автомобилях
  • Системы кондиционирования воздуха
  • Промышленные системы ОВК
  • Аппараты ИВЛ с рекуперацией тепла (HRV)

Преимущества:

  • Отсутствие загрязнения между жидкостями
  • Простое обслуживание и чистка
  • Подходит для газов и жидкостей, которые должны храниться раздельно.

Пластинчатый рекуператор тепла, произведенный в Китае

Теплообменники в основном изготавливаются из таких материалов, как алюминиевая фольга, фольга из нержавеющей стали или полимеры. При разнице температур между потоком воздуха, изолированным алюминиевой фольгой, и потоком воздуха, текущим в противоположных направлениях, происходит передача тепла, что обеспечивает рекуперацию энергии. Использование воздухо-воздушного теплообменника позволяет использовать тепло отработанного воздуха для предварительного нагрева свежего воздуха, тем самым достигая цели энергосбережения. В теплообменнике используется уникальная технология комбинированной герметизации с точечными поверхностями, которая обеспечивает длительный срок службы, высокую теплопроводность, отсутствие проницаемости и вторичного загрязнения, вызванного проникновением отработанных газов.

Plate heat recovery exchanger

Пластинчатый теплообменник с перекрестным током

QQ20241015-153001.png

Введение: Теплообменный сердечник представляет собой перекрестноточный теплообменный сердечник, в котором два потока воздуха с разной температурой движутся в положительном перекрестном потоке, а теплообмен происходит между двумя жидкостями, при этом их каналы полностью разделены.

Перекрёстноточные пластинчатые теплообменники могут применяться в воздухообрабатывающих агрегатах в качестве основного компонента рекуперации тепла. Перекрёстноточные пластинчатые теплообменники также могут применяться в системах вентиляции, устанавливаясь в воздуховодах в качестве основного компонента секции рекуперации тепла, при этом их монтажное положение может гибко меняться.

Cross flow plate heat exchangers

Области применения: решения по рекуперации отходящего тепла для машин для нанесения покрытий, ламинаторов и т. д., решения по рекуперации тепла для сушки овощей, орехов, кожицы креветок и сушеной рыбы, рекуперация отходящего тепла для окрасочно-обжигательных цехов, энергосберегающие технологии для рекуперации отходящего тепла отходящих газов, например, котельного и заводского электричества.

Модульная конструкция может обеспечить любую комбинацию размеров и высоты штабелирования для удовлетворения различных потребностей в воздушном потоке и сценических условий.

Материал: В зависимости от условий работы на месте можно выбрать различные материалы, такие как гидрофильная алюминиевая фольга, алюминиевая фольга с эпоксидной смолой, нержавеющая сталь и т. д.

Cross flow plate heat exchangers

Нужна помощь?
ru_RUРусский