タグアーカイブ parallel flow

向流は並流よりもなぜ効率的なのでしょうか?

熱交換器において、向流(カウンターフロー)は並流よりも効率が良いとされています。これは、熱交換器全体にわたって2つの流体間の温度差(ΔT)をより大きく一定に保ち、熱伝達を最大化するためです。詳しい説明は以下のとおりです。

1. 温度勾配と熱伝達

  • 逆流:
    • 向流では、流体は反対方向に流れます(例:高温の流体が一方の端から流入し、低温の流体が反対側の端から流入します)。これにより、熱交換器の全長にわたってほぼ一定の温度差(ΔT)が生じます。
    • 高温流体の最高温度(入口)が低温流体の出口に接触し、低温流体の最低温度(入口)が高温流体の出口に接触します。これにより、低温流体の温度が高温流体の入口温度に近づき、熱伝達が最大化されます。
    • 例: 高温の流体が 100°C で流入して 40°C で流出し、低温の流体が 20°C で流入した場合、90°C 近くで流出することができ、高い熱伝達率を実現します。
  • 並列フロー:
    • 並流では、両方の流体が同じ方向に流れるため、最大の ΔT は入口で発生しますが、両方の流体が交換器に沿って同様の温度に近づくにつれて、ΔT は急速に減少します。
    • 冷たい流体の出口温度は熱い流体の出口温度を超えることができないため、伝達される熱の総量は制限されます。
    • 例: 高温の流体が 100°C で流入し、60°C で流出する場合、20°C で流入する低温の流体は 50°C 程度にしか達せず、熱伝達が少なくなります。

なぜそれが重要なのか熱伝達率(Q)はΔTに比例します(Q = U × A × ΔT、Uは熱伝達係数、Aは表面積)。向流式ではΔTが大きく一定であるため、平均熱伝達率が高くなり、効率が向上します。

2. 対数平均温度差(LMTD)

  • 熱交換器の効率は、多くの場合、熱伝達を促進する平均温度差を表す対数平均温度差 (LMTD) を使用して定量化されます。
  • 逆流熱交換器全体にわたって温度差が比較的一定に保たれるため、LMTDが高くなります。これにより、同じ表面積でより多くの熱を伝達できます。
  • 並列フロー出口に向かって温度差が大幅に低下し、熱伝達の駆動力が減少するため、LMTD は低くなります。
  • 結果同じ熱交換器のサイズの場合、向流の方が LMTD が高いためより多くの熱を伝達します。または、同じ熱伝達を達成するために必要な表面積が小さいため、よりコンパクトで効率的です。

3. 最大限の熱回収

  • 向流では、冷たい流体は理論的には熱い流体の入口温度に到達できるため(無限に長い熱交換器内)、ほぼ完全な熱回収が可能になります(例:Holtop の 3D クロス向流熱交換器などの最新設計では 90~95% の効率)。
  • 並流の場合、冷流体の出口温度は温流体の出口温度によって制限され、キャッピング効率(通常60~80℃)に影響されます。そのため、向流はエネルギー回収換気や最大限の熱回収が重要な産業プロセスなどの用途に最適です。

4. 実用的な意味合い

  • 逆流: 安定したΔTにより必要な伝熱面積が削減され、高性能アプリケーションにおいてより小型でコスト効率の高い設計が可能になります。HVAC、産業用冷却システム、エネルギー回収システムなどで広く使用されています。
  • 並列フローΔTの急激な低下により、同等の熱伝達を実現するためにはより大きな伝熱面積が必要となり、材料とスペースの要件が増加します。これは、基本的なラジエーターや教育設備など、よりシンプルで効率がそれほど重要でない用途で使用されます。

視覚的な説明(簡略版)

  • 逆流高温流体(100℃~40℃)と低温流体(20℃~90℃)を想像してみてください。熱交換器全体で温度差が比較的高く(例えば約20~60℃)、効率的な熱伝達が促進されます。
  • 並列フロー同じ流体は大きな ΔT (100°C – 20°C = 80°C) で始まりますが、すぐに収束し (例: 60°C – 50°C = 10°C)、駆動力が低下して効率が制限されます。

結論

向流は、熱交換器全体にわたってより大きく安定した温度差(ΔT)を維持するため、より効率的です。その結果、LMTDが高くなり、同じ表面積でより多くの熱伝達が得られます。そのため、エネルギー回収や産業プロセスなど、高効率が求められる用途では向流が好まれます。一方、並流はよりシンプルですが効率は低く、要求の厳しい用途には適しています。

ヘルプが必要ですか?
ja日本語