タグアーカイブ 熱交換器

適切な熱交換器を選択するにはどうすればよいですか?

Choosing the right heat exchanger involves evaluating several key factors to ensure it meets your application’s needs while optimizing efficiency, cost, and performance. Here’s a concise guide to help you make an informed decision:

  1. Understand Your Application Requirements:
    • Fluid Properties: Identify the fluids involved (e.g., water, oil, or corrosive fluids) and their characteristics, such as viscosity, particulate content, and corrosiveness. Viscous fluids or those with particulates may require tubular or scraped-surface heat exchangers, while low-viscosity fluids work well with plate heat exchangers.
    • Thermal Requirements: Determine the required heat transfer rate, inlet and outlet temperatures, and whether phase changes (e.g., evaporation or condensation) are involved. Calculate the Initial Temperature Difference (ITD) by subtracting the incoming cold fluid temperature from the incoming hot fluid temperature to assess thermal performance needs.
    • 流量: Assess the flow rates of both fluids (e.g., liters per minute or gallons per minute) to ensure the heat exchanger can handle the throughput. For large-scale production, prioritize energy efficiency; for small batches, focus on minimizing product losses.
  2. Select the Appropriate Type:
    • プレート式熱交換器: Ideal for low to medium pressure, high-efficiency applications with simple fluids like milk or thin oils. They offer high heat transfer rates, compact size, and easy maintenance but are limited by gasket durability at high temperatures (up to 350°F) or pressures (up to 370 psi).
    • Shell-and-Tube Heat Exchangers: Suitable for high-pressure and high-temperature applications (e.g., oil and gas, chemical processing). They are robust and cost-effective but less efficient than plate designs and harder to clean.
    • Scraped-Surface Heat Exchangers: Best for highly viscous fluids, fluids with large particulates, or processes involving phase changes (e.g., ice cream, sauces). They are expensive but effective for continuous processing and fouling prevention.
    • Other Types: Consider air-cooled or compact heat exchangers for specific applications like automotive or space-constrained environments.
  3. Evaluate Operating Conditions:
    • Pressure and Temperature: Ensure the heat exchanger can handle the maximum design pressure and temperature. For high-pressure/temperature applications, shell-and-tube or specialized designs like dimple plates may be necessary.
    • Fouling and Maintenance: Assess the fouling potential of your fluids (e.g., sedimentation, biological growth). Plate heat exchangers are easier to clean, while scraped-surface designs reduce fouling in viscous applications. Specify fouling factors (e.g., 0.0002–0.001 m²K/W for tubular designs) to account for performance degradation.
    • 圧力降下: Calculate allowable pressure drop based on your system’s constraints (e.g., pump capacity). Designs with lower pressure drops, like shell-and-tube, can save energy.
  4. Consider Size and Space Constraints:
    • Evaluate available space for installation, maintenance, and potential expansion. Plate heat exchangers are compact and modular, allowing easy capacity adjustments by adding/removing plates. Oversizing by 30–40% can enable heat recovery if space permits.
    • For tight spaces, consider compact heat exchangers with high surface area-to-volume ratios (e.g., ≥700 m²/m³ for gas-to-gas applications).
  5. Material Selection:
    • Choose materials compatible with your fluids and operating conditions:
      • Stainless Steel: Durable, corrosion-resistant, and easy to clean, ideal for most applications.
      • Titanium: Lightweight, non-corrosive, suitable for extreme temperatures or chemical processes but costly.
      • Aluminum: Cost-effective for industrial applications but less corrosion-resistant.
      • Graphite or Ceramic: For highly corrosive or high-temperature fluids.
    • Ensure material compatibility with gaskets in plate heat exchangers to avoid failures.
  6. Cost and Efficiency:
    • Balance initial investment with long-term operational costs. Plate heat exchangers are typically the least expensive and most energy-efficient, while scraped-surface designs are costlier but necessary for specific applications.
    • Focus on total cost of ownership (TCO) over 3–4 years. Energy-efficient designs often have quick payback periods (e.g., <1 year for large-scale operations).
    • Consider eco-friendly options like ambient cooling for electrical enclosures to reduce energy costs.
  7. Consult Manufacturers and Use Tools:
    • Use manufacturer-provided comparison charts or performance graphs to match models to your thermal and flow requirements (e.g., W/°C for specific flow rates).
    • Seek professional advice to validate calculations and ensure the design meets safety and performance standards. Manufacturers can assist with sizing, installation, and maintenance planning.
  8. Avoid Common Pitfalls:
    • Don’t oversize unnecessarily if space is limited, as it increases costs without benefits.
    • Avoid selecting a design based solely on cost or tradition (e.g., assuming tubular is best for viscous fluids). Evaluate newer technologies like corrugated tube designs for better performance.
    • Ensure the heat exchanger aligns with process goals (e.g., pasteurization, cooling) to avoid quality issues or incomplete processing.

Example Calculation: For cooling a liquid from 80°C to 40°C using air at 21°C with a flow rate of 2 gpm, calculate ITD (80°C – 21°C = 59°C). Refer to performance graphs to select a model meeting the required heat transfer rate (e.g., 56 W/°C for a copper heat exchanger). Check pressure drop (e.g., 8 psi at 2 gpm) to ensure pump compatibility.

Recommendation: Start by defining your fluid properties, thermal needs, and space constraints. For simple fluids and space-limited setups, prioritize plate heat exchangers. For high-viscosity or particulate-laden fluids, consider scraped-surface or tubular designs. Consult with manufacturers to finalize the model and size, ensuring it aligns with your process and budget.

ガス-ガスプレート熱交換器とは何ですか?

ガス-ガスプレート熱交換器とは何ですか?

Gas-Gas Plate Heat Exchanger

ガス-ガスプレート熱交換器

ガス-ガスプレート式熱交換器は、高温の排気ガスから熱を回収し、流入する冷気やその他のガス流に熱を伝える高効率熱伝達装置です。従来の熱交換器とは異なり、コンパクトなプレート構造により伝熱面積が最大化され、60%~80%の熱効率を実現します。この熱交換器は、薄い波形金属プレート(通常はステンレス鋼)で構成されており、高温ガスと低温ガスにそれぞれ独立した流路を形成することで、ガス流を混合することなく熱をプレートに通過させます。

この技術は、ハードウェア部品の超音波洗浄機の乾燥システムなど、大量の廃熱が発生する産業プロセスに特に適しています。ガス-ガスプレート熱交換器は、この廃熱を回収して再利用することで、加熱プロセスに必要なエネルギーを削減し、運用コストと二酸化炭素排出量を削減します。

how does a heat exchanger work in a boiler

A heat exchanger in a boiler transfers heat from the combustion gases to the water circulating in the system. Here's how it works step by step:

  1. Combustion occurs: The boiler burns a fuel source (like natural gas, oil, or electricity), creating hot combustion gases.

  2. Heat transfer to the heat exchanger: These hot gases flow through a heat exchanger—typically a coiled or finned metal tube or series of plates made of steel, copper, or aluminum.

  3. Water circulation: Cold water from the central heating system is pumped through the heat exchanger.

  4. Heat absorption: As the hot gases pass over the surfaces of the heat exchanger, heat is conducted through the metal into the water inside.

  5. Hot water delivery: The now-heated water is circulated through radiators or to hot water taps, depending on the boiler type (combi or system boiler).

  6. Gas expulsion: The cooled combustion gases are vented out through a flue.

condensing boilers, there's an extra stage:

  • After the initial heat transfer, the remaining heat in the exhaust gases is used to preheat incoming cold water, extracting even more energy and improving efficiency. This process often creates condensate (water), which is drained from the boiler.

熱交換器は湿気を除去しますか?

標準的な空気対空気熱交換器は、主に2つの気流間で熱を伝達し、湿気を直接除去することはありません。2つの気流は分離されているため、一方の気流に含まれる水分(湿度)は通常、その気流内に留まります。ただし、熱交換器の種類によって微妙な違いがあります。

  1. 顕熱交換器これら(例えば、ほとんどのプレート式熱交換器やヒートパイプ式熱交換器)は熱のみを伝達し、水分は伝達しません。吸気と排気の湿度レベルは変化しませんが、温度変化によって相対湿度がわずかに変化することがあります(暖かい空気はより多くの水分を保持できるため、吸気を温めると相対湿度が低下する可能性があります)。
  2. エンタルピー(総エネルギー)交換器ロータリーホイールや特定の膜式熱交換器などの高度な設計では、熱と湿気の両方を移動させることができます。これらは吸湿性換気装置またはエンタルピー回収換気装置(ERV)と呼ばれます。コア材またはホイールが湿った空気流(例:暖かく湿った室内空気)から水分を吸収し、乾燥した空気流(例:冷たく乾燥した屋外空気)へと移動させることで、湿度をある程度効果的に管理します。
  3. 結露の影響特定の条件下では、熱交換器が湿った空気を露点以下に冷却すると、熱交換器の表面に結露が発生し、空気流から水分が除去されることがあります。これは付随的な現象であり、主要な機能ではありません。そのため、排水システムが必要となります。

したがって、標準的な熱交換器は、水分移動用に設計されたエンタルピー型ERVでない限り、または結露が発生しない限り、湿気を除去することはできません。湿度制御が目的の場合は、ERVまたは別途除湿システムが必要になります。

ZiBo QiYu メーカー

淄博市旗玉空調エネルギー回収設備有限公司。AHU、HRV、ヒートチューブ熱交換器、回転式熱交換器、蒸気加熱コイル、表面空気冷却器など、さまざまな空気対空気熱交換器を取り揃えています。

これらの製品はすべてカスタマイズ可能です。ご要望をお知らせいただければ、当社には専門的なモデル選択ソフトウェアがあり、最適なモデルの選択をお手伝いします。

当社の製品にご興味がございましたら、当社の Web サイトをご覧になり、詳しい情報を入手してください。

Webサイト:https://www.huanrexi.com

畜産換気における空気対空気熱回収交換器の応用

その 空気対空気熱回収交換器 畜産換気産業において、エネルギー効率を高め、最適な室内環境を維持することで、極めて重要な役割を果たしています。排気から廃熱を回収するように設計されたこの熱交換器は、畜産施設から排出される暖かくてよどんだ空気の熱エネルギーを、流入する新鮮で冷たい空気に、混合することなく伝達します。鶏舎、豚舎、その他の飼育環境では、一貫した温度管理と空気の質が重要であり、冬の間は新鮮な空気をあらかじめ温めることで暖房コストを削減し、夏の間は効果的な温度調節によって熱ストレスを緩和します。通常、アルミニウムやステンレス鋼などの耐腐食性材料で作られており、畜産環境によくある湿気とアンモニアの多い環境に耐えます。換気システムに統合することで、この熱交換器はエネルギー消費を削減するだけでなく、持続可能な農業慣行をサポートし、動物福祉と作業効率を確保します。そのアプリケーションは、費用対効果と環境責任のバランスを取ることを目指す大規模飼育事業で特に価値があります。

Air-to-Air Heat Recovery Exchanger

ホテルやランドリー業界におけるリネン乾燥用プレート式熱交換器

Application principle:
During the washing and drying process of linen, steam or hot water enters one side of the plate heat exchanger as a high-temperature fluid, while the air to be heated (for drying) enters the other side as a low-temperature fluid. Through a plate heat exchanger, the high-temperature fluid transfers heat to the low-temperature fluid, causing the air temperature to rise and achieving the purpose of preheating.
Plate heat exchangers have good thermal conductivity and can effectively transfer the heat of steam to linen, improving thermal efficiency. This means that the drying process of linen can be completed faster or energy consumption can be reduced with the same energy consumption.
Structural design: The plate heat exchanger is composed of multiple thin metal plates that form sealed channels between them. Metal plates are usually made of materials with good thermal conductivity, such as aluminum foil, copper foil, or stainless steel foil.
省エネと環境保護: By recycling and reusing heat energy, plate heat exchangers can reduce steam consumption, lower energy consumption, and protect the environment. This is particularly important for places such as hotels, guesthouses, hospitals, and the laundry industry that require a large amount of washing and drying of linen.
The application principle of the plate heat exchange core of the linen washing and drying heat exchanger is based on the basic principles of heat conduction and convection, and efficient heat exchange is achieved through reasonable structural design and material selection.

汚泥乾燥用熱交換器

Air heat exchangers play a crucial role in the low-temperature drying process of sludge. Based on the thermal conductivity and corrosion resistance of epoxy aluminum foil material, efficient low-temperature drying of sludge is achieved by optimizing the heat exchange process.


動作原理:
It uses a heat pump system to cool and dehumidify the humid air from the drying chamber through an evaporator, while heating and reheating it through a condenser to produce dry hot air that is sent into the drying chamber.
Application effect:
Epoxy aluminum foil, as a material for heat exchangers, has efficient thermal conductivity that helps to quickly transfer heat and improve heat exchange efficiency. Meanwhile, due to its corrosion resistance, it can effectively resist the erosion of corrosive gases and substances that may be generated during the sludge drying process, extending the service life of the equipment.
The application principle of the low-temperature sludge dryer heat exchanger is mainly based on the thermal conductivity and corrosion resistance of epoxy aluminum foil material. By optimizing the heat exchange process, efficient low-temperature sludge drying can be achieved.

牛肉・豚肉乾燥用プレート式熱交換器

動作原理:
During the drying process of beef and pork, the high-temperature moisture (exhaust gas) generated is transferred to the fresh air entering the system through the heat exchange core. In this way, fresh air is preheated before entering the drying area, thereby reducing the energy consumption required to heat the fresh air.
構造上の特徴:
High quality hydrophilic aluminum foil is commonly used as a heat transfer conductor, with good heat transfer efficiency and a long service life (generally up to 8-10 years)
The channels for fresh air and exhaust gases are arranged in a cross pattern, separated by aluminum foil to ensure the cleanliness of the fresh air and prevent the spread of any odors and moisture.
All connections are sealed with sealant and treated with biting edge flowing adhesive to ensure the airtightness of the heat exchanger.
パフォーマンス上の利点:
The heat exchange efficiency can reach up to 90%, which can significantly reduce energy consumption.
コンパクトな構造、小容積、さまざまな場面での設置および使用に適しています。
お手入れが簡単で、お手入れも簡単。水道水または中性洗剤で直接洗浄できます。

住宅装飾用新鮮空気システムのための全熱回収換気技術

外気システムは、現代の住宅や商業ビルで広く普及している空気処理装置であり、継続的に新鮮な空気を供給し、室内の汚染された空気を排出することができます。外気システムにおいて、熱回収効率は重要な指標であり、高い熱回収効率は、換気プロセスにおけるエネルギー回収効率の向上を意味し、エネルギー消費量を削減します。全熱交換技術は、換気中に熱と湿度を回収することで、換気によるエネルギー損失を削減し、省エネと消費量削減を実現します。

Total heat recovery ventilation technology
全熱回収とは、外気導入システムにおいて、新鮮な外気を導入しながら、熱交換器を通して排出された室内空気から熱と湿気を回収し、導入された新鮮な空気を加熱または冷却するプロセスを指します。全熱交換器は、外気と排気を混合することなく熱と湿気を交換できる省エネ装置です。
全熱交換技術の適用は、空調・暖房設備への依存度を低減するだけでなく、持続可能な開発の概念に沿って、全体的なエネルギー消費量を削減します。適切な外気供給システムを選択することで、居住快適性を向上させるだけでなく、省エネ、排出量削減、カーボンニュートラルといった目標を達成できます。

ヘルプが必要ですか?
ja日本語