タグアーカイブ Cross Flow Heat Exchanger

クロスフロー熱交換器はどのように機能するのか

A crossflow heat exchanger works by allowing two fluids to flow at right angles (perpendicular) to each other, typically with one fluid flowing through tubes and the other flowing across the outside of the tubes. The key principle is that heat is transferred from one fluid to the other through the walls of the tubes. Here's a step-by-step breakdown of how it works:

Components:

  1. Tube Side: One of the fluids flows through the tubes.
  2. Shell Side: The other fluid flows over the tubes, across the tube bundle, in a direction perpendicular to the flow of the fluid inside the tubes.

Working Process:

  1. Fluid Inlet: Both fluids (hot and cold) enter the heat exchanger at different inlets. One fluid (let's say the hot fluid) enters through the tubes, and the other fluid (cold fluid) enters the space outside the tubes.
  2. Fluid Flow:

    • The fluid flowing inside the tubes moves in a straight or slightly twisted path.
    • The fluid flowing outside the tubes crosses over them in a perpendicular direction. The path of this fluid can be either crossflow (directly across the tubes) or have a more complex configuration, like a combination of crossflow and counterflow.

  3. 熱伝達:

    • Heat from the hot fluid is transferred to the tube walls and then to the cold fluid flowing across the tubes.
    • The efficiency of heat transfer depends on the temperature difference between the two fluids. The larger the temperature difference, the more efficient the heat transfer.

  4. Outlet: After heat transfer, the now cooler hot fluid exits through one outlet, and the now warmer cold fluid exits through another outlet. The heat exchange process results in a temperature change in both fluids as they flow through the heat exchanger.

Design Variations:

  • Single-pass crossflow: One fluid flows in a single direction across the tubes, and the other fluid moves through the tubes.
  • Multi-pass crossflow: The fluid inside the tubes can flow in multiple passes to increase the contact time with the fluid outside, improving heat transfer.

Efficiency Considerations:

  • Crossflow heat exchangers are generally less efficient than counterflow heat exchangers because the temperature gradient between the two fluids decreases along the length of the heat exchanger. In counterflow, the fluids maintain a more consistent temperature difference, which makes it more effective for heat transfer.
  • However, crossflow heat exchangers are easier to design and are often used in situations where space is limited or where fluids need to be separated (like in air-to-air heat exchangers).

Applications:

  • Air-cooled heat exchangers (like in HVAC systems or car radiators).
  • Cooling of electronic equipment.
  • Heat exchangers for ventilation systems.

So, while not as thermally efficient as counterflow heat exchangers, crossflow designs are versatile and commonly used when simplicity or space-saving is important.

temperature profile for cross flow heat exchanger

Here’s a breakdown of the temperature profile for a cross flow heat exchanger, specifically when both fluids are unmixed:


🔥 Cross Flow Heat Exchanger – Both Fluids Unmixed

➤ Flow Arrangement:

  • One fluid flows horizontally (say, hot fluid in tubes).
  • The other flows vertically (say, cold air across the tubes).
  • No mixing within or between the fluids.


📈 Temperature Profile Description:

▪ Hot Fluid:

  • Inlet temperature: High.
  • As it flows, it loses heat to the cold fluid.
  • Outlet temperature: Lower than inlet, but not uniform across the exchanger due to varying contact time.

▪ Cold Fluid:

  • Inlet temperature: Low.
  • Gains heat as it flows across the hot tubes.
  • Outlet temperature: Higher, but also varies across the exchanger.

🌀 Because of the crossflow and no mixing:

  • Each point on the exchanger sees a different temperature gradient, depending on how long each fluid has been in contact with the surface.
  • The temperature distribution is nonlinear and more complex than in counterflow or parallel flow exchangers.


📊 Typical Temperature Profile (schematic layout):

                ↑ Cold fluid in

High │ ┌──────────────┐
Temp │ │ │
│ │ │ → Hot fluid in (right side)
│ │ │
↓ └──────────────┘
Cold fluid out ← Hot fluid out

⬇ Temperature Curves:

  • Cold fluid gradually heats up — the curve starts low and arcs upward.
  • Hot fluid cools down — starts high and arcs downward.
  • The curves are not parallel, and not symmetrical due to crossflow geometry and varying heat exchange rate.


🔍 Efficiency:

  • The effectiveness depends on the heat capacity ratio and the NTU (Number of Transfer Units).
  • Generally less efficient than counterflow but more efficient than parallel flow.

両方の流体が混ざらないクロスフロー熱交換器

A 両方の流体が混ざらないクロスフロー熱交換器 refers to a type of heat exchanger where two fluids (hot and cold) flow perpendicular (at 90°) to each other, and neither fluid mixes internally or with the other. This configuration is common in applications like air-to-air heat recovery or automotive radiators.

Key Features:

  • Cross flow: The two fluids move at right angles to each other.
  • Unmixed fluids: Both the hot and cold fluids are confined to their respective flow passages by solid walls or fins, preventing any mixing.
  • Heat transfer: Occurs across the solid wall or surface separating the fluids.

Construction:

Typically includes:

Enclosed channels for the second fluid (e.g., water or refrigerant) to flow inside the tubes.

Tubes or finned surfaces where one fluid (e.g., air) flows across the tubes.

Common Applications:

  • Radiators in cars
  • Air-conditioning systems
  • Industrial HVAC systems
  • Heat recovery ventilators (HRVs)

Advantages:

  • No contamination between fluids
  • Simple maintenance and cleaning
  • Good for gases and fluids that must remain separate

心肺機能に使用されるクロスフロー熱交換器

体外循環(CPB)などの心肺機能に関わる分野において、クロスフロー熱交換器は患者の血液温度を調節するために不可欠な部品です。これらの装置は、開胸手術や一時的な心肺補助を必要とするその他の処置中に体外循環される血液を加温または冷却するために、人工心肺装置に組み込まれることがよくあります。

仕組み

クロスフロー熱交換器では、2つの流体(通常は血液と熱伝達媒体(水など))が互いに垂直に流れ、固体表面(金属またはポリマー製のプレート/チューブなど)によって分離されます。この固体表面によって流体が混ざることなく熱伝達が促進されます。この設計により、生体適合性を維持し、血液へのダメージを最小限に抑えながら、熱交換効率を最大限に高めることができます。

  • 血流経路: 人工心肺装置からの酸素化された血液は、1 セットのチャネルまたはチューブを通って流れます。
  • 水の流れの経路温度制御された水が隣接するチャネルセットを垂直方向に流れ、臨床上の必要性に応じて血液を温めたり冷やしたりします(例:低体温の誘発または復温)。
  • 熱伝達血液と水の間の温度勾配が、伝導面を介した熱交換を促進します。クロスフロー構造により、熱交換器全体の温度差が一定となり、高い熱伝達率を実現します。

主な特徴

  1. 生体適合性凝固、溶血、または免疫反応を防ぐために、材料(ステンレス鋼、アルミニウム、または医療グレードのポリマーなど)が選択されます。
  2. コンパクトなデザイン: クロスフロー交換器はスペース効率に優れ、CPB 回路への統合に不可欠です。
  3. 効率: 垂直方向の流れにより温度勾配が最大化され、平行方向の流れの設計に比べて熱伝達が向上します。
  4. 不妊症: システムは汚染を防ぐために密閉されており、単一患者に対する処置では使い捨てのコンポーネントがよく使用されます。
  5. コントロール: ヒータークーラーユニットと組み合わせることで、熱交換器は正確な血液温度を維持します (例: 低体温の場合は 28 ~ 32 °C、正常体温の場合は 36 ~ 37 °C)。

心肺手術における応用

  • 低体温誘導CPB 中は、血液を冷却して代謝需要を減らし、循環低下時に脳や心臓などの臓器を保護します。
  • 復温: 手術後は、熱ストレスを与えることなく血液を徐々に温めて正常な体温に戻します。
  • 温度調節体外式膜型人工肺(ECMO)やその他の長期循環補助システムにおいて安定した血液温度を維持します。

設計上の考慮事項

  • 表面積表面積が大きいほど熱伝達は向上しますが、プライミング量(回路を満たすために必要な流体の量)を最小限に抑えることとバランスをとる必要があります。
  • 流量: 血流は、効率的な熱伝達のために十分な乱流である必要がありますが、赤血球を損傷するほど乱流であってはなりません。
  • 圧力降下: 血流抵抗を最小限に抑える設計により、ポンプの過度な圧力を回避します。
  • 感染管理: ヒータークーラーユニット内の滞留水には細菌が生息する可能性がある(例: マイコバクテリウム・キメラ)、厳格なメンテナンスプロトコルが必要になります。

CPB回路における典型的なクロスフロー熱交換器は、血液が流れる薄壁チューブの束と、その周囲を温度制御された水が垂直方向に循環するウォータージャケットで構成されています。この熱交換器は、患者の深部体温からのリアルタイムフィードバックに基づいて水温を調整するヒータークーラーユニットに接続されています。

課題とリスク

  • 溶血乱流による過度のせん断応力は血液細胞に損傷を与える可能性があります。
  • 血栓形成性: 表面相互作用により血栓形成が引き起こされ、抗凝固剤(ヘパリンなど)が必要になる場合があります。
  • 空気塞栓症: プライミングが不適切だと気泡が発生し、バイパス中に重大な危険が生じる可能性があります。
  • 感染症: ヒーター・クーラーユニット内の汚染された水は、まれではあるが重篤な感染症と関連付けられています。

窯廃熱回収・再利用システム - ガスステンレス鋼クロスフロー熱交換器方式

The kiln waste heat recovery and reuse system aims to fully utilize the high-temperature heat in the kiln exhaust gas, and achieve a win-win situation of energy conservation and environmental protection through gas stainless steel cross flow heat exchangers. The core of this solution lies in the use of a stainless steel cross flow heat exchanger, which efficiently exchanges heat between high-temperature exhaust gas and cold air, generating hot air that can be reused.

Working principle: The exhaust gas and cold air flow in a cross flow manner inside the heat exchanger and transfer heat through the stainless steel plate wall. After releasing heat from exhaust gas, it is discharged. Cold air absorbs the heat and heats up into hot air, which is suitable for scenarios such as assisting combustion, preheating materials, or heating.

Advantages:

Efficient heat transfer: The cross flow design ensures a heat transfer efficiency of 60% -80%.
Strong durability: Stainless steel material is resistant to high temperatures and corrosion, and can adapt to complex exhaust environments.
Flexible application: Hot air can be directly fed back to the kiln or used for other processes, with significant energy savings.
System process: Kiln exhaust gas → Pre treatment (such as dust removal) → Stainless steel heat exchanger → Hot air output → Secondary utilization.

This solution is simple and reliable, with a short investment return cycle, making it an ideal choice for kiln waste heat recovery, helping enterprises reduce energy consumption and improve efficiency.

データセンターの間接蒸発冷却システムにおけるクロスフロー熱交換器の応用

The application of cross flow heat exchangers in Indirect Evaporative Cooling (IDEC) systems in data centers is mainly reflected in efficient heat exchange, reducing energy consumption, and improving data center cooling efficiency. Here are its key roles and advantages:

  1. Basic working principle
    Cross flow heat exchanger is a type of heat exchange device whose structure allows two streams of air to cross each other while maintaining physical isolation. In indirect evaporative cooling systems in data centers, it is typically used for heat exchange between cooling air and outdoor ambient air without direct mixing.
    The workflow is as follows:
    The primary air (data center return air) exchanges heat with the secondary air (external ambient air) through one side of the heat exchanger.
    The secondary air evaporates and cools in the humidification section, reducing its own temperature, and then absorbs heat in the heat exchanger to cool the primary air.
    After the primary air is cooled down, it is sent back to the data center to cool down the IT equipment.
    The secondary air is ultimately discharged outdoors without entering the interior of the data center, thus avoiding the risk of pollution.
  2. Advantages in Data Centers
    (1) Efficient and energy-saving, reducing cooling demand
    Reduce cooling load: By using cross flow heat exchangers, data centers can utilize external air cooling instead of relying on traditional mechanical refrigeration (such as compressors).
    Improve PUE (Power Usage Effectiveness): Reduce the operating time of mechanical cooling equipment, lower energy consumption, and make PUE values closer to the ideal state (below 1.2).
    (2) Completely physically isolated to avoid contamination
    Cross flow heat exchangers can ensure that outdoor air does not come into direct contact with the air inside the data center, avoiding pollution, dust, or humidity affecting IT equipment. They are suitable for data centers with high air quality requirements.
    (3) Suitable for various climatic conditions
    In dry or warm climates, indirect evaporative cooling systems are particularly effective and can significantly reduce the cooling costs of data centers.
    Even in areas with high humidity, optimizing the design of heat exchangers can improve heat exchange efficiency.
    (4) Reduce water resource consumption
    Compared to direct evaporative cooling (DEC), indirect evaporative cooling does not require direct spraying of water into the air of the data center, but rather indirect cooling through a heat exchanger, thus reducing water loss.
  3. Applicable scenarios
    Cross flow heat exchangers are widely used in the following types of data centers:
    Hyperscale Data Center: Requires efficient and energy-saving cooling solutions to reduce operating costs.
    Cloud computing data center: requires high PUE values and seeks more sustainable cooling methods.
    Edge Data Center: typically located in harsh environments, requiring efficient and low maintenance cooling systems.
  4. Challenge and Optimization Plan
    Heat exchanger size and efficiency: Larger cross flow heat exchangers can improve heat exchange efficiency, but they also increase the footprint, so optimization design is needed, such as using aluminum or composite material heat exchangers to improve heat exchange efficiency.
    Scaling and maintenance: Due to humidity changes, heat exchangers may experience scaling issues, requiring regular cleaning and the use of corrosion-resistant coatings to extend their lifespan.
    Control system optimization: Combined with intelligent control, dynamically adjust the working mode of the heat exchanger based on external environmental temperature, humidity, and data center load conditions to improve system adaptability.
  5. Future Development Trends
    New efficient heat exchange materials, such as nano coated heat exchangers, further improve heat exchange efficiency.
    Combined with AI intelligent control system, dynamically adjust the heat exchange according to the real-time load of the data center.
    Combining liquid cooling technology to further improve heat dissipation efficiency in high-density server rooms.

Cross flow heat exchangers play an important role in the indirect evaporative cooling system of data centers, providing efficient heat transfer, reducing energy consumption, minimizing pollution, and improving equipment reliability. They are currently one of the important technologies in the field of data center cooling, especially suitable for large-scale, high-efficiency data centers.

ヘルプが必要ですか?
ja日本語