タグアーカイブ 空気対空気熱交換器

スプレー乾燥熱回収における空気対空気熱交換器の仕組み

In spray drying heat recovery, an 空気対空気熱交換器 is used to recover waste heat from the hot, moist exhaust air leaving the drying chamber and transfer it to the incoming fresh (but cooler) air. This reduces the energy demand of the drying process significantly.

How It Works:

  1. Exhaust Air Collection:

    • After spray drying, hot exhaust air (often 80–120°C) contains both heat and water vapor.

    • This air is pulled out of the chamber and sent to the heat exchanger.

  2. Heat Exchange Process:

    • The hot exhaust air flows through one side of the heat exchanger (often made of corrosion-resistant materials due to possible stickiness or mild acidity).

    • At the same time, cool ambient air flows through the other side, in a separate channel (counter-flow or cross-flow setup).

    • Heat is transferred through the exchanger walls from the hot side to the cool side, without mixing the air streams.

  3. Preheating Incoming Air:

    • The incoming fresh air gets preheated before entering the spray dryer’s main heater (gas burner or steam coil).

    • This lowers the fuel or energy required to reach the desired drying temperature (typically 150–250°C at the inlet).

  4. Exhaust Air Post-Treatment (optional):

    • After heat extraction, the cooler exhaust air can be filtered or treated for dust and moisture before being released or further used.

Benefits:

  • Energy Savings: Cuts down fuel or steam consumption by 10–30% depending on setup.

  • Lower Operating Costs: Less energy input reduces utility expenses.

  • Environmental Impact: Reduces CO₂ emissions by improving energy efficiency.

  • Temperature Stability: Helps maintain consistent drying performance.

NMP熱回収における空気対空気熱交換器の仕組み

An air-to-air heat exchanger in NMP heat recovery transfers thermal energy between a hot, NMP-laden exhaust air stream from an industrial process and a cooler incoming fresh air stream, improving energy efficiency in industries like battery manufacturing.

The hot exhaust air (e.g., 80–160°C) and cooler fresh air pass through separate channels or over a heat-conductive surface (e.g., plates, tubes, or a rotary wheel) without mixing. Heat transfers from the hot exhaust to the cooler fresh air via sensible heat transfer. Common types include plate heat exchangers, rotary heat exchangers, and heat pipe heat exchangers.

NMP-specific designs use corrosion-resistant materials like stainless steel or glass fiber-reinforced plastic to withstand NMP’s aggressive nature. Larger fin spacing or clean-in-place systems prevent fouling from dust or residues. Condensation is managed to avoid blockages or corrosion.

The hot exhaust air transfers heat to the fresh air, preheating it (e.g., from 20°C to 60–80°C) and reducing energy needs for subsequent processes. The cooled exhaust air (e.g., 30–50°C) is sent to an NMP recovery system (e.g., condensation or adsorption) to capture and recycle the solvent. Heat recovery efficiency is 60–95%, depending on the design.

This reduces energy consumption by 15–30%, lowers greenhouse gas emissions, and improves NMP recovery by cooling the exhaust air for easier solvent capture. Challenges like fouling are addressed with wider gaps, extractable elements, or cleaning systems, while robust sealing prevents cross-contamination.

In a battery manufacturing plant, a plate heat exchanger preheats fresh air from 20°C to 90°C using 120°C exhaust air, reducing oven energy demand by ~70%. The cooled exhaust air is processed to recover 95% of NMP.

木材乾燥における空気対空気熱交換器の仕組み

An air-to-air heat exchanger in wood drying transfers heat between two air streams without mixing them, optimizing energy efficiency and controlling drying conditions. Here's how it works:

  1. Purpose in Wood Drying: Wood drying (kiln drying) requires precise temperature and humidity control to remove moisture from wood without causing defects like cracking or warping. The heat exchanger recovers heat from exhaust air (leaving the kiln) and transfers it to incoming fresh air, reducing energy costs and maintaining consistent drying conditions.
  2. Components:
    • A heat exchanger unit, typically with a series of metal plates, tubes, or fins.
    • Two separate air pathways: one for hot, humid exhaust air from the kiln and one for cooler, fresh incoming air.
    • Fans or blowers to move air through the system.
  3. Working Mechanism:
    • 排気: Hot, moisture-laden air from the kiln (e.g., 50–80°C) passes through one side of the heat exchanger. This air carries heat energy from the drying process.
    • 熱伝達: The heat from the exhaust air is conducted through the exchanger’s thin metal walls to the cooler incoming fresh air (e.g., 20–30°C) on the other side. The metal ensures efficient heat transfer without mixing the two air streams.
    • Fresh Air Heating: The incoming air absorbs the heat, raising its temperature before it enters the kiln. This preheated air reduces the energy needed to heat the kiln to the desired drying temperature.
    • Moisture Separation: The exhaust air, now cooler, may condense some of its moisture, which can be drained away, helping to control humidity in the kiln.
  4. Types of Heat Exchangers:
    • プレート式熱交換器: Use flat plates to separate air streams, offering high efficiency.
    • Tube Heat Exchangers: Use tubes for air flow, durable for high-temperature applications.
    • Heat Pipe Exchangers: Use sealed pipes with a working fluid to transfer heat, effective for large kilns.
  5. Benefits in Wood Drying:
    • エネルギー効率: Recovers 50–80% of heat from exhaust air, lowering fuel or electricity costs.
    • Consistent Drying: Preheated air maintains stable kiln temperatures, improving wood quality.
    • 環境への影響: Reduces energy consumption and emissions.
  6. 課題:
    • メンテナンス: Dust or resin from wood can accumulate on exchanger surfaces, requiring regular cleaning.
    • 初期費用: Installation can be expensive, though offset by long-term energy savings.
    • Humidity Control: The system must balance heat recovery with proper moisture removal to avoid overly humid conditions.

In summary, an air-to-air heat exchanger in wood drying captures heat from exhaust air to preheat incoming air, improving energy efficiency and maintaining optimal drying conditions. It’s a critical component in modern kiln systems for sustainable, high-quality wood processing.

外気システムにおける空気対空気熱交換器の仕組み

外気システムにおける空気対空気熱交換器は、流入する新鮮な空気と排出される古い空気の間で熱を伝達しますが、両者を混合することはありません。その仕組みは以下のとおりです。

  1. 構造熱交換器は、薄いチャネルまたはプレートが交互に配置されたコアで構成されており、多くの場合金属またはプラスチック製で、入ってくる空気と出ていく空気を分離します。これらのチャネルは、空気の流れを遮断しながら熱伝達を可能にします。
  2. 熱伝達:
    • 冬には、排気される暖かい室内の空気がその熱をより冷たい新鮮な空気に伝え、それを暖めます。
    • 夏には、涼しい室内の空気がその「涼しさ」を暖かい空気に移し、暖かい空気を事前に冷却します。
    • このプロセスは、温度差によって熱交換器の壁を介した伝導によって発生します。
  3. 種類:
    • クロスフロー: 空気の流れが垂直に流れるため、中程度の効率が得られます(50-70%)。
    • 逆流: 空気の流れが反対方向に流れ、熱伝達が最大化されます (最大 90% の効率)。
    • ロータリー(エンタルピーホイール)回転ホイールが熱と湿気を吸収・移動し、湿度コントロールに最適です。
  4. 利点:
    • 排気熱の50~90%を回収することでエネルギーロスを削減します。
    • 冷暖房コストを最小限に抑えながら新鮮な空気を供給することで、室内の空気の質を維持します。
  5. 外気システムでの操作:
    • ファンが交換器を通じて建物から古い空気を吸い込み、別のファンが新鮮な屋外の空気を吸い込みます。
    • 交換器により、流入する空気が分配前に(室内温度に近くなるように)調整され、HVAC システムの負荷が軽減されます。
  6. 湿気コントロール (一部のモデル)
    • エンタルピー交換器は湿気も移動させ、室内の過度の乾燥や湿気を防ぎます。

このシステムは、空気の質を維持しながら熱をリサイクルすることで、換気効率、エネルギー節約、快適性を確保します。

空気対空気熱交換器はどのように機能するのか

空気対空気熱交換器は、2つの別々の空気流を混合することなく、熱を伝達します。通常、アルミニウムなどの熱伝導性材料で作られた薄い板またはチューブを、表面積が最大になるように配置して構成されています。一方の空気流(例:建物からの暖かい排気)は片側を流れ、もう一方の空気流(例:冷たい新鮮な空気)は反対側を流れます。

暖かい空気流の熱は伝導性材料を通過して冷たい空気流へと伝わり、空気流を温めます。このプロセスにより、本来失われるはずだったエネルギーが回収され、暖房または冷房システムの効率が向上します。クロスフロー式やカウンターフロー式の熱交換器などの設計では、空気を特定のパターンに導くことで熱伝達を最適化します。効率は空気流量、温度差、熱交換器の設計などの要因によって異なりますが、通常は50~80%の熱を回収します。

一部のモデル(例:エンタルピー交換器)では、特殊な膜を用いて水蒸気と熱を移動させ、湿度制御に役立てることで、水分移動が発生する場合があります。このシステムでは、空気を移動させるためのファンが必要であり、メンテナンスには詰まりや汚染を防ぐための清掃が必要です。

工業用空気対空気熱交換器 | 向流熱交換器

アン 産業用空気対空気熱交換器 2つの空気流を混合することなく熱を伝達し、HVACシステム、産業プロセス、換気におけるエネルギー効率を向上させます。 向流熱交換器 2 つの空気流が反対方向に流れ、交換面全体で一貫した温度勾配により熱伝達効率が最大化される特殊なタイプです。

産業用空気対空気向流熱交換器の主な特徴:

  • 効率: 向流設計では、高温流と低温流の温度差が比較的一定に保たれるため、直交流熱交換器や並流熱交換器に比べて、より高い熱効率 (多くの場合 70-90%) が達成されます。
  • 工事耐久性と耐腐食性を高めるため、通常はアルミニウム、ステンレス鋼、ポリマーなどの材料で作られています。プレート型またはチューブ型が一般的です。
  • アプリケーション: 工業用乾燥、廃熱回収、データ センター、建物の換気で空気を予熱または予冷するために使用されます。
  • 利点: エネルギーコストを削減し、二酸化炭素排出量を減らし、相互汚染を防ぐことで空気の質を維持します。
  • 課題: 逆流設計のため圧力損失が高く、ファンの消費電力が増加する場合があります。汚れや詰まりを防ぐため、メンテナンスが必要です。

例:

工場では、向流熱交換器によって高温の排気(例:80°C)から熱を回収し、流入する新鮮な空気(例:10°C ~ 60°C)を予熱することで、加熱エネルギーを大幅に節約できます。

industrial air to air heat exchanger | counterflow heat exchanger

工業用空気対空気熱交換器 | 向流熱交換器

What is the difference between the crossflow and counter flow heat exchangers?

The main difference between crossflow and counterflow heat exchangers lies in the direction in which the two fluids flow relative to each other.

  1. Counterflow Heat Exchanger:

    • In a counterflow heat exchanger, the two fluids flow in opposite directions. This arrangement maximizes the temperature gradient between the fluids, which improves heat transfer efficiency.
    • Benefit: The counterflow design is typically more efficient because the temperature difference between the fluids is maintained across the entire length of the heat exchanger. This makes it ideal for applications where maximizing heat transfer is crucial.

  2. Crossflow Heat Exchanger:

    • In a crossflow heat exchanger, the two fluids flow perpendicular (at an angle) to each other. One fluid typically flows in a single direction, while the other flows in a direction that crosses the first fluid’s path.
    • Benefit: While the crossflow arrangement is not as thermally efficient as counterflow, it can be useful when space or design constraints exist. It is often used in situations where the fluids must flow in fixed paths, such as in air-cooled heat exchangers or situations with phase changes (e.g., condensation or evaporation).

Key Differences:

  • Flow Direction: Counterflow = opposite directions; Crossflow = perpendicular directions.
  • 効率: Counterflow tends to have higher heat transfer efficiency due to the more consistent temperature gradient between fluids.
  • アプリケーション: Crossflow is often used where counterflow isn't feasible due to design limitations or space constraints.

畜産換気における空気対空気熱回収交換器の応用

その 空気対空気熱回収交換器 畜産換気産業において、エネルギー効率を高め、最適な室内環境を維持することで、極めて重要な役割を果たしています。排気から廃熱を回収するように設計されたこの熱交換器は、畜産施設から排出される暖かくてよどんだ空気の熱エネルギーを、流入する新鮮で冷たい空気に、混合することなく伝達します。鶏舎、豚舎、その他の飼育環境では、一貫した温度管理と空気の質が重要であり、冬の間は新鮮な空気をあらかじめ温めることで暖房コストを削減し、夏の間は効果的な温度調節によって熱ストレスを緩和します。通常、アルミニウムやステンレス鋼などの耐腐食性材料で作られており、畜産環境によくある湿気とアンモニアの多い環境に耐えます。換気システムに統合することで、この熱交換器はエネルギー消費を削減するだけでなく、持続可能な農業慣行をサポートし、動物福祉と作業効率を確保します。そのアプリケーションは、費用対効果と環境責任のバランスを取ることを目指す大規模飼育事業で特に価値があります。

Air-to-Air Heat Recovery Exchanger

窯乾燥からの廃熱の回収と利用:ステンレス鋼溶接プレート空気対空気熱交換器

窯乾燥からの廃熱の回収と利用

窯乾燥廃熱回収利用とは、原料を乾燥するために窯から排出される排気ガスから廃熱を回収して利用し、エネルギー利用効率を向上させ、生産コストを削減することを指します。
窯乾燥における廃熱回収と利用の技術的原理
窯乾燥における廃熱回収と利用の技術原理は、熱交換器を使用して窯の排気ガスの熱を新鮮な空気に移し、新鮮な空気を加熱することです。加熱された新鮮な空気は材料の乾燥に使用され、乾燥効率が向上し、エネルギー消費が削減されます。
窯乾燥における廃熱回収利用の応用
窯乾燥における廃熱回収および利用の技術は、以下を含むさまざまな窯乾燥システムに適用できます。
レンガとタイルの窯乾燥
窯乾燥
建材窯の乾燥
化学窯乾燥
食品の乾燥
農産物および副産物の乾燥
窯乾燥からの廃熱をリサイクルして利用する利点
窯乾燥からの廃熱の回収と利用には次のような利点があります。
省エネ:窯の排気ガス中の廃熱を有効活用し、エネルギー消費を削減し、生産コストを削減できます。
環境保護:排気ガスを削減し、環境汚染を軽減できます。
乾燥効率の向上:乾燥効率を向上させ、乾燥時間を短縮し、製品の品質を向上させることができます。
窯乾燥からの廃熱を回収して利用する一般的な方法
窯乾燥からの廃熱を回収して利用する一般的な方法は次のとおりです。
排ガスからの廃熱回収: 熱交換器を使用して排ガスの熱を新鮮な空気に移し、材料を乾燥させます。
窯体廃熱回収:窯体の廃熱を利用して新鮮な空気を加熱し、材料を乾燥させます。
廃熱乾燥窯:窯の排気ガスを直接利用して材料を乾燥させます。
窯乾燥廃熱の回収と利用に関する注記
窯乾燥からの廃熱を回収して利用する場合には、以下の予防措置を講じる必要があります。
適切な廃熱回収装置を選択する: 窯の種類、乾燥材料、残留熱などの要素に基づいて、適切な廃熱回収装置を選択する必要があります。
熱交換効率の確保: 熱交換効率を確保するために、熱交換装置は定期的に検査およびメンテナンスする必要があります。
腐食防止:廃熱回収装置の腐食を防止するための対策を講じる必要があります。
省エネと排出削減の要件が継続的に改善されるにつれて、窯乾燥における廃熱回収と利用の技術はますます広く適用されるようになるでしょう。

空気対空気熱交換器の計算機

空対空熱交換器計算機は通常、空対空熱交換器または熱回収換気装置 (HRV) システムの熱伝達およびエネルギー回収効率を決定するのに役立ちます。正確な計算は複雑になる可能性があり、さまざまな要因に依存します。熱交換器の種類、温度差、流量、比熱容量など。このような計算機を使用するには、通常、次の情報が必要です。
1.温度差: 吸気温度と排気温度を入力して、温度差を計算します。
2.流量:熱伝達率を決定するには、流入空気流と排気流の流量が必要です。
3.比熱容量:給気側と排気側の空気の比熱容量を計算に使用します。
4. 効率: 計算機は、排出される空気から吸入される空気に熱がどれだけ効率的に伝達されるかを示す効率評価も提供します。
5.熱回収: 計算機は回収された熱エネルギーの量を表示する場合があり、これはエネルギー節約量を見積もるのに役立ちます。
計算機によって複雑さは異なり、オンラインまたはソフトウェア アプリケーションとして利用できるシンプルなツールと高度なツールの両方があります。特に複雑なシステムの場合、正確な計算を行うには、専用の HVAC 設計ソフトウェアを使用するか、プロの HVAC エンジニアに相談することが推奨されることが多いです。
このような計算機を使用する場合は、特定の空対空熱交換器システムに対して意味のある結果が得られるように、正確な入力値があることを確認してください。

ヘルプが必要ですか?
ja日本語