著者アーカイブ シャオハイ

窯廃熱回収・再利用システム - ガスステンレス鋼クロスフロー熱交換器方式

The kiln waste heat recovery and reuse system aims to fully utilize the high-temperature heat in the kiln exhaust gas, and achieve a win-win situation of energy conservation and environmental protection through gas stainless steel cross flow heat exchangers. The core of this solution lies in the use of a stainless steel cross flow heat exchanger, which efficiently exchanges heat between high-temperature exhaust gas and cold air, generating hot air that can be reused.

Working principle: The exhaust gas and cold air flow in a cross flow manner inside the heat exchanger and transfer heat through the stainless steel plate wall. After releasing heat from exhaust gas, it is discharged. Cold air absorbs the heat and heats up into hot air, which is suitable for scenarios such as assisting combustion, preheating materials, or heating.

Advantages:

Efficient heat transfer: The cross flow design ensures a heat transfer efficiency of 60% -80%.
Strong durability: Stainless steel material is resistant to high temperatures and corrosion, and can adapt to complex exhaust environments.
Flexible application: Hot air can be directly fed back to the kiln or used for other processes, with significant energy savings.
System process: Kiln exhaust gas → Pre treatment (such as dust removal) → Stainless steel heat exchanger → Hot air output → Secondary utilization.

This solution is simple and reliable, with a short investment return cycle, making it an ideal choice for kiln waste heat recovery, helping enterprises reduce energy consumption and improve efficiency.

ZiBo QiYu メーカー

淄博市旗玉空調エネルギー回収設備有限公司。AHU、HRV、ヒートチューブ熱交換器、回転式熱交換器、蒸気加熱コイル、表面空気冷却器など、さまざまな空気対空気熱交換器を取り揃えています。

これらの製品はすべてカスタマイズ可能です。ご要望をお知らせいただければ、当社には専門的なモデル選択ソフトウェアがあり、最適なモデルの選択をお手伝いします。

当社の製品にご興味がございましたら、当社の Web サイトをご覧になり、詳しい情報を入手してください。

Webサイト:https://www.huanrexi.com

畜産換気における空気対空気熱回収交換器の応用

その 空気対空気熱回収交換器 畜産換気産業において、エネルギー効率を高め、最適な室内環境を維持することで、極めて重要な役割を果たしています。排気から廃熱を回収するように設計されたこの熱交換器は、畜産施設から排出される暖かくてよどんだ空気の熱エネルギーを、流入する新鮮で冷たい空気に、混合することなく伝達します。鶏舎、豚舎、その他の飼育環境では、一貫した温度管理と空気の質が重要であり、冬の間は新鮮な空気をあらかじめ温めることで暖房コストを削減し、夏の間は効果的な温度調節によって熱ストレスを緩和します。通常、アルミニウムやステンレス鋼などの耐腐食性材料で作られており、畜産環境によくある湿気とアンモニアの多い環境に耐えます。換気システムに統合することで、この熱交換器はエネルギー消費を削減するだけでなく、持続可能な農業慣行をサポートし、動物福祉と作業効率を確保します。そのアプリケーションは、費用対効果と環境責任のバランスを取ることを目指す大規模飼育事業で特に価値があります。

Air-to-Air Heat Recovery Exchanger

中国製プレート式熱回収交換器

Heat exchangers are mainly made of materials such as aluminum foil, stainless steel foil, or polymers. When there is a temperature difference between the airflow isolated by aluminum foil and flowing in opposite directions, heat transfer occurs, achieving energy recovery. By using an air to air heat exchanger, the heat in the exhaust can be utilized to preheat the fresh air, thereby achieving the goal of energy conservation. The heat exchanger adopts a unique point surface combination sealed process, which has a long service life, high temperature conductivity, no permeation, and no secondary pollution caused by the permeation of exhaust gas.

Plate heat recovery exchanger

データセンターの間接蒸発冷却システムにおけるクロスフロー熱交換器の応用

The application of cross flow heat exchangers in Indirect Evaporative Cooling (IDEC) systems in data centers is mainly reflected in efficient heat exchange, reducing energy consumption, and improving data center cooling efficiency. Here are its key roles and advantages:

  1. Basic working principle
    Cross flow heat exchanger is a type of heat exchange device whose structure allows two streams of air to cross each other while maintaining physical isolation. In indirect evaporative cooling systems in data centers, it is typically used for heat exchange between cooling air and outdoor ambient air without direct mixing.
    The workflow is as follows:
    The primary air (data center return air) exchanges heat with the secondary air (external ambient air) through one side of the heat exchanger.
    The secondary air evaporates and cools in the humidification section, reducing its own temperature, and then absorbs heat in the heat exchanger to cool the primary air.
    After the primary air is cooled down, it is sent back to the data center to cool down the IT equipment.
    The secondary air is ultimately discharged outdoors without entering the interior of the data center, thus avoiding the risk of pollution.
  2. Advantages in Data Centers
    (1) Efficient and energy-saving, reducing cooling demand
    Reduce cooling load: By using cross flow heat exchangers, data centers can utilize external air cooling instead of relying on traditional mechanical refrigeration (such as compressors).
    Improve PUE (Power Usage Effectiveness): Reduce the operating time of mechanical cooling equipment, lower energy consumption, and make PUE values closer to the ideal state (below 1.2).
    (2) Completely physically isolated to avoid contamination
    Cross flow heat exchangers can ensure that outdoor air does not come into direct contact with the air inside the data center, avoiding pollution, dust, or humidity affecting IT equipment. They are suitable for data centers with high air quality requirements.
    (3) Suitable for various climatic conditions
    In dry or warm climates, indirect evaporative cooling systems are particularly effective and can significantly reduce the cooling costs of data centers.
    Even in areas with high humidity, optimizing the design of heat exchangers can improve heat exchange efficiency.
    (4) Reduce water resource consumption
    Compared to direct evaporative cooling (DEC), indirect evaporative cooling does not require direct spraying of water into the air of the data center, but rather indirect cooling through a heat exchanger, thus reducing water loss.
  3. Applicable scenarios
    Cross flow heat exchangers are widely used in the following types of data centers:
    Hyperscale Data Center: Requires efficient and energy-saving cooling solutions to reduce operating costs.
    Cloud computing data center: requires high PUE values and seeks more sustainable cooling methods.
    Edge Data Center: typically located in harsh environments, requiring efficient and low maintenance cooling systems.
  4. Challenge and Optimization Plan
    Heat exchanger size and efficiency: Larger cross flow heat exchangers can improve heat exchange efficiency, but they also increase the footprint, so optimization design is needed, such as using aluminum or composite material heat exchangers to improve heat exchange efficiency.
    Scaling and maintenance: Due to humidity changes, heat exchangers may experience scaling issues, requiring regular cleaning and the use of corrosion-resistant coatings to extend their lifespan.
    Control system optimization: Combined with intelligent control, dynamically adjust the working mode of the heat exchanger based on external environmental temperature, humidity, and data center load conditions to improve system adaptability.
  5. Future Development Trends
    New efficient heat exchange materials, such as nano coated heat exchangers, further improve heat exchange efficiency.
    Combined with AI intelligent control system, dynamically adjust the heat exchange according to the real-time load of the data center.
    Combining liquid cooling technology to further improve heat dissipation efficiency in high-density server rooms.

Cross flow heat exchangers play an important role in the indirect evaporative cooling system of data centers, providing efficient heat transfer, reducing energy consumption, minimizing pollution, and improving equipment reliability. They are currently one of the important technologies in the field of data center cooling, especially suitable for large-scale, high-efficiency data centers.

工業用熱リサイクルビンシリーズ

注記:

          1.排気温度が200℃以下の産業廃ガスからの熱を回収し、新鮮な空気を加熱することができる。

          2. 熱回収ボックスの構造は現場の状況に合わせて設計できます。

          3. この構造には給気ファンや排気ファンはありません。

          4. この表の熱回収効率は、給排気量と同じです。給排気量が異なる場合の熱回収効率については、弊社までお問い合わせください。

          5.熱回収ボックスは床置き型、天井型、その他の構造タイプにすることができます(一般的な風量100000m%/h)。

商業用換気とエネルギー回収

適切な室内空気質(IAQ)には、地域の状況や気候に応じて多くの要因が関係します。呼吸障害などの健康問題は、ほこり、花粉、その他の汚染物質を含む空気によって発生する可能性があります。劣悪な室内環境は建物に損傷を与える可能性もあります。

商業用(非住宅用)の空調ユニットは、オフィス、ホテル、空港などの建物向けに設計された大型のユニットになる傾向があります。課題は、できるだけ少ないエネルギー入力で快適な IAQ を実現することです。つまり、圧力降下は低く(必要なファン電力は少なくなる)、熱/湿度効率は高く(暖房/冷房/湿度制御に消費されるエネルギーは少なくなる)必要があります。

地理的な地域に応じて、熱交換器の主な目的は、建物に入る前の屋外の空気を加熱するか、冷却するか(場合によっては除湿するか)の間で変わります。

空調ユニット(AHU)は換気システムの中心にあります。少なくとも、AHU にはユニットを通して空気を移動させるための 1 つまたは複数のファンが各空気チャネルに含まれています。両側のフィルターはほこりや花粉などを除去し、ファンを保護します。最後に、熱交換器が必要な熱または湿度を排気から給気へ伝達します。

空気対空気熱交換器を実装することは、通常廃熱と考えられるものを利用する優れた方法です。空気対空気熱交換器は、給気と排気の温度差を利用してシステムの効率を高めます。空気対空気熱交換器には、ロータリー式熱交換器とプレート式熱交換器の 2 種類があります。

タイプと正確な構成は用途によって異なります。どちらのタイプも、効率的な熱伝達能力や非常に長い耐用年数などの優れた特性を持つアルミニウムで作られています。当社では、各製品に多数の設計変数とオプションを提供しており、あらゆる AHU に完璧にフィットし、パフォーマンスを発揮します。

データセンターにおける間接冷却

現代のデータ センターは技術的に非常に複雑であり、安全かつ効率的に稼働し続けるためには、継続的な綿密な監視と管理が必要です。

適切な温度を維持することは、データセンター管理者にとって最も重要な課題の一つです。データセンター内の温度と湿度が過度に上昇すると、結露が発生し、内部の機器に損傷を与える可能性があります。これは甚大な損害と混乱を引き起こす可能性があるため、何としても回避しなければなりません。幸いなことに、データセンターの温度を適切なレベルに保つための様々なテクノロジーが利用可能です。

データセンターの冷却方法は数多くあります。間接空冷は外気を利用しますが、空気対空気熱交換器を組み込むことで、外気を別のループに保持し、サーバールームに空気が入ることなく冷却を実現します。

間接冷却方式の利点は、屋外の大気汚染物質や湿気によって室内空気が汚染されないことです。熱交換器がデータセンター建物の内外の空気の流れを分離し、熱を建物内から外へ伝達します。そのため、外気と室内空気が混ざることはありません。

データセンターが常に低温の地域にある場合、通常は乾式冷却で十分です。つまり、水は不要です。しかし、熱交換器の外気側に水を噴霧することで蒸発効果が得られ、室内温度が低下します。この方法は間接蒸発冷却(IEC)と呼ばれます。

温暖で乾燥した気候に最適なIECは、優れた冷却能力を備えながら、運用コストと初期コストを抑えます。夏季には、周囲温度が6~8℃(10~15°F)低下するのが一般的です。IECは、従来のフリークーリングと比較して最大28%、空冷式フリークーリングの代替システムと比較して最大52%のエネルギーを節約します。

蒸発冷却には、高い効率と低い圧力損失を両立し、堅牢な耐腐食性と信頼性の高い水密性を備えたプレート式熱交換器が必要です。クロスフロー熱交換器は、これらの要件をすべて満たし、優れた冷却能力を提供します。

当社のクロスフロー熱交換器、特に蒸発冷却技術は、従来の冷却方法に代わる効率的で低コスト、かつ環境に優しい代替手段を提供します。

Indirect Cooling in Data Centers

全自動非仕切りエアフィルター生産ライン

全自動非仕切りエアフィルター生産ライン

全自動ノンパーティションエアフィルター生産ラインは、高度に自動化された生産システムであり、主に高性能エアフィルターの製造に使用され、産業、商業、家庭用空気清浄装置に広く使用されています。その主な特徴は、ノンパーティション設計を採用することでエアフィルターの濾過効率を向上させ、空気抵抗を低減することです。

主な特徴:
仕切りのない設計: 従来の空気フィルターでは通常、フィルター材料層を仕切りで分離しますが、仕切りのない設計では空気の流れの障害を効果的に減らすことができるため、ろ過効率が向上し、エネルギー消費が削減されます。
完全に自動化された操作: 原材料の切断、フィルター材料の組み立てから完成品の梱包まで、生産ラインは完全な自動化を実現し、手作業による介入を減らし、生産効率と一貫性を向上させます。
高精度制御システム:高度な自動化制御システムとセンサーを統合することで、生産プロセスを正確に制御し、高品質のフィルター製品を実現します。
迅速な切り替えと柔軟性: 生産ラインは、さまざまな仕様とタイプのフィルターの生産をサポートし、さまざまな顧客のニーズに合わせて生産モードを迅速に切り替えることができます。
効率的な生産能力: 大規模な生産要件を満たし、安定した製品品質を確保できる効率的なプロセスとモジュール システムを設計します。

製紙工場の乾燥排気ガスの白色化および曇り止めのための熱回収装置

製紙工場の生産工程で発生する排ガスは、高温、高湿度、悪臭といった特性を有しています。そのまま排出すると、環境を汚染するだけでなく、大量の熱エネルギーを無駄に消費します。この問題を解決するため、当社は製紙工場の排ガス乾燥に用いる、白色化・脱曇効果のある熱回収装置を開発しました。

Heat recovery device for whitening and defogging exhaust gas from paper mill drying
動作原理:
熱交換原理:プレート式熱交換器の原理に基づき、一連の平行な金属プレートを介して熱交換を行います。高温の排気ガスがプレートの片側を流れ、新鮮な空気がもう片側を流れ、プレート壁を通して熱を伝達することで廃熱回収を実現します。
冷却・加熱工程:まず、高温の排気ガスを周囲温度に近い温度まで冷却し、その後、再加熱器で加熱して排気ガス温度を周囲温度より高くすることで、白霧現象を解消します。
技術的な利点:
効率的で省エネ:排気ガスからの廃熱を回収することで、エネルギー消費量と運用コストが大幅に削減されます。
環境保護と排出削減:排気ガスから水分と臭気成分を効果的に除去し、環境への汚染を削減します。
コンパクトな構造: 小型、軽量、設置が簡単、占有スペースが少なくて済みます。
アプリケーションシナリオ:
製紙業界:紙の乾燥工程中に熱を回収し、乾燥機に入る空気を予熱することで、乾燥効率を高め、燃料消費を削減します。
食品加工業界:穀物、野菜、果物などの乾燥工程からの廃熱をリサイクルして新鮮な空気を予熱し、乾燥効率を向上させます。
化学産業: 化学製品の乾燥プロセスからの高温の廃ガスを他のプロセスガスや空気の加熱にリサイクルします。
繊維産業:繊維の乾燥工程における廃熱回収に使用され、乾燥効率と省エネ効果が向上します。

ヘルプが必要ですか?
ja日本語