著者アーカイブ シャオハイ

効率的で環境に優しく、信頼性が高い - QIYU 空冷式チラーは、最高の産業用冷却ソリューションです。

室内空気質研究のリーダーである淄博市齊裕空調エネルギー設備有限公司は、効率的で環境に優しいHVACソリューションの提供に尽力しています。当社の空冷式チラーシリーズは、高度な技術と安定した性能を備え、プラスチック、エレクトロニクス、電気めっき、食品加工、医薬品、インク印刷、真空成形、射出成形、レーザー加工、金属鋳造、ブロー成形、精密機械、ガラス工芸、宝飾品加工、皮革、水産養殖、製紙、牛乳冷凍、化学製造などの業界で幅広く利用されており、省エネと生産効率の向上に貢献しています。

主な利点:

  • 省エネで環境に優しい: 環境に優しい冷媒R410Aを使用し、冷却塔が不要なため、水資源と設置スペースを節約できます。乾燥地域(例:中国北部)に最適です。効率的な時間単位の冷却を実現し、二酸化炭素排出量を最小限に抑え、環境に優しく健康的な職場環境を実現します。
  • 高効率で安定した動作:パナソニック、サンヨーなどの一流コンプレッサー、定評のあるポンプ、軸流ファンを搭載し、低騒音、高圧、迅速な放熱を実現します。台湾製コントローラーによる全自動リモートコントロールシステムにより、0.1℃単位の温度精度と5~30℃の調整範囲を実現し、24時間365日連続運転をサポートします。
  • スマートな安全保護欠相・逆相、高圧・低圧、過負荷、水位、凍結防止など、複数の電気安全装置を内蔵しています。工場で試運転済みなので、電源と給水管を接続するだけですぐに使用できます。
  • 柔軟なカスタマイズオプション機能には、ステンレス製ポンプ、ハウジング、複数の冷水入口/出口、銅製蒸発器(より高い熱交換効率)、負圧吸引システム、またはさまざまな環境に適応するためのリモート コントロールなどがあります。

包括的な仕様、優れたパフォーマンス冷却能力は2.4Kwから73.5Kwまで、複数のモデル(例:LSJシリーズ)を取り揃えています。凝縮器は銅管と親水性アルミフィンを採用し、蒸発器はステンレス鋼コイルまたはシェルアンドチューブ構造を採用しています。また、304ステンレス鋼タンクは自動給水機能を備え、長期耐久性を実現します。

効率性、信頼性、そして環境に優しい産業パートナーとして、QIYU空冷チラーをお選びください。省エネ冷却の旅を始めるには、今すぐお問い合わせください。

ガス-ガスプレート熱交換器とは何ですか?

ガス-ガスプレート熱交換器とは何ですか?

Gas-Gas Plate Heat Exchanger

ガス-ガスプレート熱交換器

ガス-ガスプレート式熱交換器は、高温の排気ガスから熱を回収し、流入する冷気やその他のガス流に熱を伝える高効率熱伝達装置です。従来の熱交換器とは異なり、コンパクトなプレート構造により伝熱面積が最大化され、60%~80%の熱効率を実現します。この熱交換器は、薄い波形金属プレート(通常はステンレス鋼)で構成されており、高温ガスと低温ガスにそれぞれ独立した流路を形成することで、ガス流を混合することなく熱をプレートに通過させます。

この技術は、ハードウェア部品の超音波洗浄機の乾燥システムなど、大量の廃熱が発生する産業プロセスに特に適しています。ガス-ガスプレート熱交換器は、この廃熱を回収して再利用することで、加熱プロセスに必要なエネルギーを削減し、運用コストと二酸化炭素排出量を削減します。

エチレングリコール熱回収換気ユニット

An ethylene glycol heat recovery ventilation unit is an air handling device that uses ethylene glycol solution as a heat transfer medium to recover heat or cooling energy from exhaust air, improving the energy efficiency of air conditioning systems. It is widely used in places requiring strict separation of fresh and exhaust air, such as hospitals, laboratories, and industrial facilities.

動作原理

The ethylene glycol heat recovery ventilation unit achieves energy recovery through a heat exchanger and ethylene glycol solution:

  1. Exhaust Side: The cooling or heating energy in the exhaust air is transferred to the ethylene glycol solution via a heat exchanger, altering the solution's temperature.
  2. Fresh Air Side: A circulation pump delivers the cooled or heated ethylene glycol solution to the fresh air side's heat exchanger, adjusting the fresh air temperature to reduce the operating load and energy consumption of the air conditioning system.
  3. Heat Recovery Efficiency: The heat recovery efficiency of the ethylene glycol solution can reach about 50%, depending on system design and operating conditions.

System Components

  • Fresh Air Side: Fresh air section, primary/medium efficiency filter section, ethylene glycol heat exchanger, and supply fan section.
  • Exhaust Side: Return air section, primary efficiency filter section, ethylene glycol heat exchanger, and exhaust fan section.

アプリケーション

  • Suitable for scenarios requiring complete isolation of fresh and exhaust air, such as hospitals and cleanrooms.
  • Ideal for industrial or commercial buildings needing efficient energy recovery, such as factories and transportation facilities.

利点

  • High Energy Efficiency: Reduces air conditioning system energy consumption through heat recovery, lowering operating costs.
  • Flexibility: Adjusts fresh air temperature based on varying climate conditions, adapting to diverse environments.
  • Safety: Ethylene glycol solution prevents heat exchanger freezing in low-temperature environments.

Considerations

  • メンテナンス: Regular checks on the ethylene glycol solution concentration and circulation pump operation are necessary.
  • Design Requirements: System design must consider the layout of fresh and exhaust air ducts to ensure efficient heat exchange and prevent cross-contamination.

液体循環エネルギー回収熱交換システム

液循環エネルギー回収熱交換システムは、エチレングリコール溶液を熱媒体として用い、排気側の熱交換器を通して排気中の冷気(熱)をエチレングリコール溶液に伝達し、エチレングリコール溶液の温度を低下(上昇)させます。そして、冷却(加熱)されたエチレングリコール溶液は循環ポンプを通して外気側の熱交換器に輸送され、外気の温度を低下(上昇)させ、外気システムの負荷を軽減し、空調システム全体の運転コストを削減します。

液体循環エネルギー回収循環システムは、排気側熱交換器、外気側熱交換器、接続配管、および必要な付属品で構成されています。エネルギー回収はエチレングリコール溶液循環ポンプを介して行われ、システム全体は比較的複雑です。エチレングリコール熱回収モジュールは、循環システムにおける多数の接続部品と複雑な構造の問題を解決し、熱交換システムの信頼性と安全性を向上させます。外気と排気は相互汚染を生じないため、給排気を完全に分離し、さらには遠隔地の給気システムにも適しています。

Liquid circulation energy recovery heat exchange system

液体循環エネルギー回収熱交換システム

乾燥時の排気ガスから熱を回収する方法

工業用乾燥プロセスの排ガスから熱を回収することは、エネルギー効率の向上、コスト削減、そして排出量の削減に効果的な方法です。以下は、乾燥機の排ガスから熱を回収する方法について、実用的な手順、技術、そして考慮すべき事項に焦点を当てた簡潔なガイドです。空気対空気熱交換器と廃熱回収システムへの関心に合わせて構成されています。

乾燥機の排気ガスから熱を回収する手順

  1. 排気ガス特性の評価:
    • 排気の温度(乾燥機の場合は通常 60°C 以上)、流量、および排気の組成(水分、ほこり、腐食性元素など)を測定します。
    • 顕熱量(温度ベース)と潜熱量(水分ベース)を決定します。
    • 例: 食品加工におけるスプレードライヤーの排気は、湿度が高く、80~150°Cになる場合があります。
  2. ヒートシンクの機会を特定する:
    • 乾燥機の入口空気の予熱、プロセス水の加熱、施設 HVAC の供給など、回収された熱を利用できる近くのプロセスを見つけます。
    • 効率を最大限に高めるには、直接統合(例:乾燥機の空気の予熱)を優先します。
  3. 適切な熱回収技術を選択する:
    • 空気対空気熱交換器 (主な焦点):
      • プレート式熱交換器排気熱を吸気へ伝達するために、金属またはポリマープレートを使用します。ポリマープレートは、湿気や埃を含んだ排気による腐食や汚れを防ぎます。
      • ロータリー熱交換器: 回転するホイールが熱を伝達するため、大量の流量に最適です。
      • 応用: 乾燥機の吸入空気を予熱し、燃料使用量を最大 20% 削減します。
    • 空気液体熱交換器:
      • プロセス加熱やボイラー給水のために水または熱媒油に熱を伝達します。
      • 応用食品工場や化学工場の洗浄水を加熱します。
    • ヒートポンプ:
      • 低温の排熱をアップグレードし、乾燥などのプロセスで再利用します。
      • 応用: 乳製品加工における乾燥機の空気予熱用の昇温装置。
    • 直接接触型熱交換器:
      • 排気ガスは水と接触して熱を回収し、汚染物質を除去します。
      • 応用: 酸性排気のある窯や乾燥機に適しています。
    • 廃熱ボイラー:
      • 高温排気から蒸気を発生させ、プロセスや電力に利用します。
      • 応用: セラミック製の高温乾燥機。
  4. システムの設計とインストール:
    • サプライヤーと協力して、乾燥機の排気条件とヒートシンクのニーズに合わせたシステムを設計します。
    • 材料(ポリマーやステンレス鋼など)が汚れや腐食に耐えられることを確認します。
    • 乾燥機の下流に熱交換器を設置し、ほこりがある場合はフィルターまたはスクラバーも設置します。
    • 例: ポリマー空気対空気交換器をスプレードライヤーに後付けして、吸入空気を予熱し、エネルギーコストを削減できます。
  5. パフォーマンスの監視と最適化:
    • センサーを使用して、温度、流量、熱回収の効率を追跡します。
    • 汚れを防ぐために熱交換器を定期的に清掃してください。
    • 生産需要に基づいて熱伝達を最大化するようにシステム設定を調整します。

工業用乾燥機向け廃熱回収システム

産業用乾燥機向け廃熱回収システムは、高温の排気ガスや気流から熱エネルギーを回収・再利用することで、エネルギー効率の向上、運用コストの削減、排出量の削減を実現します。これらのシステムは、化学、食品、セラミック、繊維などの産業におけるエネルギー集約型の乾燥プロセスに有用です。以下では、主要な技術、メリット、そして米国に拠点を置くサプライヤーと連絡先について概説します。

工業用乾燥機における廃熱回収の主要技術
工業用乾燥機は、顕熱と潜熱を含む高温多湿の排気ガスを排出します。回収システムはこの熱を回収し、再利用します。一般的な技術には以下のものがあります。

空気対空気熱交換器:
プレート式熱交換器またはロータリー式熱交換器を介して、高温の排気から流入する新鮮な空気へ熱を伝えます。ポリマー製空気予熱器は、腐食や汚れに強いです。
用途: 乾燥機の吸入空気を予熱し、燃料消費量を最大 20% 削減します。
利点: シンプル、コスト効率が高く、メンテナンスが容易。
空気対液体熱交換器:
排気からの熱を捕捉して液体を温め、プロセス加熱や施設 HVAC に使用します。
用途: 食品加工工場における処理水の加熱。
利点: 多目的な熱再利用。
ヒートポンプ:
低温の廃熱を高温に昇温して再利用します。
用途: 化学業界や乳製品業界での乾燥機の空気予熱用の熱上昇。
利点: 低温源に対して高い効率。
直接接触熱交換器:
高温の排気ガスは液体と直接接触して熱を伝達し、多くの場合、排気ガスの汚染物質を除去します。
用途: 窯、オーブン、乾燥機からの熱回収。
利点: 熱を回収しながら排気を浄化します。
廃熱ボイラー:
高温の排気ガスをプロセス使用または発電用の蒸気に変換します。
用途: セラミックまたは鉱物処理における高温乾燥機。
利点: 蒸気または電気を生成します。
乾燥機における廃熱回収のメリット
エネルギー節約: 最大 20% の効率向上。
CO2 削減: 効率が 1% 向上するごとに、CO2 排出量が 1% 削減されます。
コスト削減: 回収期間は数か月から 3 年。
環境コンプライアンス: 排出量と廃熱の放出を削減します。
プロセスの最適化: 安定した温度により製品の品質が向上します。
課題と解決策
汚れと腐食: ポリマー熱交換器またはインライン洗浄システムにより問題が軽減されます。
ヒートシンクの可用性: 経済的な統合のためには、近くで熱を利用する必要があります。
システム設計: カスタム エンジニアリングにより互換性が確保されます。

乾燥装置におけるガスツーガス熱回収技術の省エネ性能

ガスツーガス熱回収技術は、高温の排気ガスから廃熱を回収し、それを流入する冷気へ転換することで、乾燥設備のエネルギー効率を大幅に向上させます。このプロセスにより、新鮮な空気を加熱するためのエネルギー需要が削減され、燃料消費量と運用コストが削減されます。

乾燥システム、特に食品加工、タバコ、製紙、汚泥処理などの業界では、排気によって大量の熱エネルギーが失われることがよくあります。ガス対ガス熱交換器(一般的にはアルミニウムまたはステンレス鋼箔で作られています)を組み込むことで、この廃熱を回収し、再利用することができます。回収されたエネルギーは、システム構成と運転条件に応じて、入口空気を30~70℃予熱することができます。

現場での実証実験では、ガスツーガス熱回収システムの使用により、エネルギー消費量を15%~35%削減し、乾燥サイクルを短縮し、システム全体の効率を向上させることが示されています。さらに、二酸化炭素排出量の削減と熱制御の改善にも貢献するため、現代の乾燥プロセスにとって持続可能で費用対効果の高いソリューションとなります。

熱回収外気ユニット

The heat recovery fresh air unit is an energy-efficient ventilation system that introduces fresh outdoor air while recovering heat from the exhaust air. It uses a heat exchanger—typically a plate-type or rotary wheel exchanger—to transfer thermal energy between incoming and outgoing airstreams without mixing them, significantly reducing heating or cooling loads.

Constructed with high-efficiency filters, fans, and a heat exchanger core (commonly aluminum or enthalpy material), the system ensures a continuous supply of fresh air while maintaining indoor temperature stability and improving air quality. It helps reduce energy consumption, enhance indoor comfort, and comply with modern building energy-saving standards.

These units are ideal for applications in offices, factories, schools, hospitals, and other facilities requiring reliable ventilation and temperature control with reduced operating costs.

産業用熱回収ボックス、廃ガスおよび熱回収、ガス対ガス熱交換器

産業用熱回収ボックスは、様々な産業用途における排ガス流から熱を回収するために設計された、コンパクトで効率的なシステムです。ガス対ガス熱交換器を用いて、高温の排ガスから流入する新鮮な空気へ熱エネルギーを伝達し、2つの気流を混合させることなく、熱エネルギーを放出します。このプロセスにより、追加の加熱の必要性が低減され、エネルギー効率が大幅に向上し、運用コストの削減と環境への影響の軽減につながります。

アルミニウムやステンレス鋼などの耐久性の高い材料で構築されたこのシステムは、高温および腐食性環境に耐えることができます。内部の熱交換器は、多くの場合アルミ箔またはアルミ板で構成されており、高い熱伝導性と効率的な熱伝達を実現します。この設計により、汚れた排気と清浄な給気の相互汚染を防ぎ、食品加工、タバコ、印刷、化学、汚泥処理などの産業に適しています。

この省エネソリューションは、廃熱を回収するだけでなく、室内空気質の改善と安定した生産環境の維持にも役立ちます。設置とメンテナンスが容易な産業用熱回収ボックスは、持続可能性の向上と省エネ規制の遵守を目指す工場にとって賢明な選択肢です。

Industrial heat recovery box, waste gas and heat recovery, gas to gas heat exchanger

産業用熱回収ボックス、廃ガスおよび熱回収、ガス対ガス熱交換器

炭素取引市場の国際的な状況

I. 主要な炭素取引市場の概要

1. 欧州連合排出量取引制度(EU ETS)

  • 打ち上げ: 2005年、世界初かつ最も成熟した炭素市場。

  • カバレッジ: 発電、製造、航空など。

  • 特徴: 毎年減少する排出枠を伴うキャップアンドトレード制度。世界的な価格ベンチマークとして機能します。

  • 発達: 現在はフェーズIV(2021~2030年)にあり、排出上限が厳しくなり、対象範囲が拡大されています。

2. 中国国家炭素市場

  • 打ち上げ: 2021年に正式に開始され、当初は電力部門を対象とします。

  • 範囲: 対象となるCO₂排出量で最大の炭素市場。

  • 機構: 手当に基づき、地域のパイロット (北京、上海、広東など) の経験を活用します。

  • 未来鉄鋼やセメントなど排出量の多い他の産業にも拡大する計画。

3. 米国地域炭素市場

  • 連邦市場なしただし、2 つの主要な地域システムが存在します。

    • カリフォルニア州キャップ・アンド・トレード制度: ケベックと連携し、非常に活発かつ包括的。

    • 地域温室効果ガスイニシアチブ(RGGI)米国北東部の州の電力発電をカバーします。

  • 特徴: 市場ベース、自発的な参加、堅牢な設計。

4. その他の国と地域

  • 韓国: 韓国ETS(K-ETS)は2015年に開始され、着実に発展しています。

  • ニュージーランド: 国際的な炭素クレジットを可能にする柔軟な ETS を運営します。

  • カナダケベック州やオンタリオ州などの州は独自の市場を運営しており、ケベック州はカリフォルニア州とつながっています。


II. 炭素市場メカニズムの種類

1. コンプライアンス市場

  • 政府義務 企業に排出量上限を守らせ、そうでなければ罰金を科すシステム。

  • : EU ETS、中国の国内市場、カリフォルニアのシステム。

2. 自主炭素市場(VCM)

  • 必須ではない 参加; 組織または個人が炭素クレジットを購入して排出量を相殺します。

  • 一般的なプロジェクトの種類: 林業(炭素吸収源)、再生可能エネルギー、エネルギー効率。

  • 認証機関:Verra(VCS)、Gold Standardなど


III. 世界的な動向と統合

  1. 市場間の相互接続性の高まり

    • 例: カリフォルニア州とケベック州には炭素市場が連携しています。

    • 議論中:EUはスイスなどとの連携の可能性を検討中。

  2. 炭素国境調整メカニズム(CBAM)

    • EUが提案するCBAMは、炭素含有量の高い輸入品に課税し、他国に炭素価格設定制度を導入するよう圧力をかけることになる。

  3. 国境を越えた炭素クレジットの流れ

    • の下で パリ協定第6条世界的な炭素取引の標準化と規模拡大を目指し、国際的な炭素クレジット交換の枠組みが形成されつつあります。

  4. 国別決定貢献(NDC)との統合

    • NDC目標を達成するために、炭素市場を国家気候戦略に組み込む国が増えています。


IV. 課題と機会

課題:

  • 多様な規則や基準が市場の連携を妨げている。

  • 自主市場の質はさまざまであり、監視も一貫していない。

  • 炭素価格の変動は企業の計画に影響を及ぼす可能性があります。

機会:

  • ネットゼロ目標は炭素市場の急速な発展を促進します。

  • 技術の進歩(MRV システム、ブロックチェーンなど)により透明性が向上します。

  • 金融セクターの関与の拡大、 炭素市場の金融化.

ヘルプが必要ですか?
ja日本語