著者アーカイブ シャオハイ

Elevate Healthcare with Clean Air Conditioning System

Transform healthcare environments with our Clean Air Conditioning Fresh Air System! Tailored for hospitals and operating rooms, this system combines advanced filtration with energy recovery, ensuring a sterile atmosphere while cutting costs by up to 60-70%.

主な利点:

  • Sterile Precision: High-level purification for critical surgical settings.

  • エネルギー節約: Reduce HVAC expenses with efficient energy recovery.

  • Health Priority: Minimize infection risks with pristine air quality.

Proven Excellence!A top hospital saw a 20% energy reduction and improved infection control. Upgrade your facility now for safer, smarter air management!

Boost Efficiency with Heat Pump Drying System Energy Recovery

Elevate your drying process with our state-of-the-art Heat Pump Drying System! Perfect for agriculture and food processing industries, this technology recovers up to 75% of waste heat, drying tea, fruits, and grains with unmatched efficiency while preserving quality.

Unmatched Benefits:

  • エネルギー節約: Slash energy costs with superior heat recovery.

  • Premium Quality: Maintain optimal drying conditions to enhance product nutrition and taste.

  • Green Advantage: Reduce your carbon footprint with sustainable drying solutions.

Success in Action!A leading tea plant reduced drying energy by 30% with our system, boosting yield and quality. Upgrade your production line today and join the ranks of industry leaders!

新鮮な空気エネルギー回収システムで公共空間を変革

Experience a breath of fresh air and unmatched efficiency with our cutting-edge Fresh Air Energy Recovery System! Designed for bustling public places like airports, train stations, and shopping malls, this innovative solution captures up to 70-80% of energy from exhaust air to precondition incoming fresh air, slashing energy costs and enhancing air quality.

Why Choose Us?

  • Eco-Friendly Efficiency: Drastically reduces energy consumption, making it a green choice for high-traffic areas.

  • Superior Air Quality: Delivers a constant stream of clean, filtered air, ensuring a healthier environment for all.

  • Cost-Effective Innovation: Lower operational costs with a system proven to save big in large facilities.

Transform Your Space Today!Installed in a major international airport, our system cut energy use by an impressive 25% annually. Imagine the savings and comfort for your public venue—contact us now to revolutionize your space with sustainable technology!

廃ガス熱回収:産業エネルギー効率の中核

In modern industrial production, large amounts of high-temperature exhaust gases are released from ovens, dryers, furnaces, and other thermal equipment. These gases often carry significant heat energy, which, if discharged directly, not only wastes valuable resources but also contributes to environmental heat pollution. Waste gas heat recovery systems offer an efficient solution to reclaim this energy and convert it into reusable heat, becoming a vital component of industrial heat recovery technology.

1. What Is Waste Gas Heat Recovery
Waste gas heat recovery refers to the process of capturing heat from exhaust gases generated during industrial operations and transferring it to other media such as air, water, or oil.
Common equipment includes air-to-air heat exchangers, plate heat exchangers, finned tube heat exchangers, and heat pipe exchangers.
By reusing existing heat energy, these systems significantly reduce fuel consumption, lower operating costs, and improve overall energy efficiency.

2. How the System Works
Before exhaust gases are discharged, they pass through a heat exchanger where heat is transferred to a cooler medium.
The recovered heat can then be used for air preheating, process heating, hot water production, or space heating, while the cooled exhaust gas is released safely.
This process not only saves energy but also lowers exhaust temperature and reduces visible “white smoke” emissions caused by water vapor condensation.

3. Typical Applications

  • Textile and Dyeing Lines: Recovering exhaust heat from setting machines (150–200°C) to preheat fresh air, saving 25–40% energy.

  • Coating and Drying Systems: Using recovered heat for inlet air preheating, reducing natural gas consumption.

  • Paint Spray Booths: Reusing hot exhaust for ventilation heating to maintain constant drying efficiency.

  • Food Processing and Tobacco Drying: Improving energy utilization and process stability through heat recovery.

  • Boilers and Hot Air Furnaces: Reclaiming flue gas heat to preheat feedwater, increasing boiler thermal efficiency.

4. Key Advantages

  • Significant Energy Savings – Reduces fuel use by 20–40%.

  • Environmental Protection – Cuts CO₂ emissions and heat pollution.

  • Fast ROI – Typical payback period within 1–2 years.

  • Improved Working Environment – Lower exhaust temperature and reduced heat buildup in workshops.

5. Future Development Trends
The next generation of waste gas heat recovery systems will integrate with intelligent control, heat pump technologies, and energy management platforms.
With real-time monitoring, dynamic adjustment, and modular design, industrial facilities can achieve optimized energy utilization—ensuring that every degree of heat is fully reclaimed and reused.

コンデンサーフィン金型と順送金型

製品紹介

コンデンサフィン金型は、連続高速生産のためのツールです。複数の異なる機能を持つ金型を組み合わせた全自動順送金型であり、現代の熱交換器工場における主要な生産ツールとなっています。

フィンプレス金型部品の金属材料は高速耐摩耗鋼SKH51、SKH11で、真空高温焼入れ処理が施されており、耐用年数が延長されています。

フィン金型の主要部品は交換可能な設計となっています。長期間の高速使用で部品が摩耗した場合、フィンのサイズは設計要件を満たせなくなります。金型の主要部品の低コストな交換のみが必要です。

コンデンサーフィン金型材料詳細

いいえ。 部品名 原材料
1 大きなプレートを成形する EN C45
2 ガイドポスト SKH11
3 パンチ針 SKH51
4 ルーバー部品 SKH51
5 小さなプレートを成形する Cr12MoV
6 金属スプリング 50CrVA

産業廃熱回収の形態は何ですか?

The forms of industrial waste gas heat recovery include:

  1. Heat Exchanger Recovery: Using heat exchangers (e.g., plate, tube, or finned types) to transfer heat from waste gas to a cold fluid (e.g., water or air) for heating process media or generating steam.
  2. Steam Generator: Utilizing waste heat to drive a steam generator, producing steam for industrial processes or heating.
  3. Heat Pipe Technology: Employing heat pipe heat exchangers to recover waste heat efficiently, often used for medium- and low-temperature heat recovery.
  4. Organic Rankine Cycle (ORC): Using waste heat to drive an ORC system, converting heat into electricity, suitable for medium- and low-temperature heat.
  5. Heat Pump Systems: Upgrading low-grade waste heat to higher temperatures via heat pumps for heating or process needs.
  6. Direct Utilization: Directly using waste heat to preheat raw materials, air, or fuel, such as for combustion air preheating or material drying.
  7. Combined Heat and Power (CHP): Integrating waste heat for both power generation and heating to improve overall energy efficiency.
  8. Thermal Storage Recovery: Storing waste heat in thermal storage materials (e.g., ceramics or metals) for later use.

向流は並流よりもなぜ効率的なのでしょうか?

熱交換器において、向流(カウンターフロー)は並流よりも効率が良いとされています。これは、熱交換器全体にわたって2つの流体間の温度差(ΔT)をより大きく一定に保ち、熱伝達を最大化するためです。詳しい説明は以下のとおりです。

1. 温度勾配と熱伝達

  • 逆流:
    • 向流では、流体は反対方向に流れます(例:高温の流体が一方の端から流入し、低温の流体が反対側の端から流入します)。これにより、熱交換器の全長にわたってほぼ一定の温度差(ΔT)が生じます。
    • 高温流体の最高温度(入口)が低温流体の出口に接触し、低温流体の最低温度(入口)が高温流体の出口に接触します。これにより、低温流体の温度が高温流体の入口温度に近づき、熱伝達が最大化されます。
    • 例: 高温の流体が 100°C で流入して 40°C で流出し、低温の流体が 20°C で流入した場合、90°C 近くで流出することができ、高い熱伝達率を実現します。
  • 並列フロー:
    • 並流では、両方の流体が同じ方向に流れるため、最大の ΔT は入口で発生しますが、両方の流体が交換器に沿って同様の温度に近づくにつれて、ΔT は急速に減少します。
    • 冷たい流体の出口温度は熱い流体の出口温度を超えることができないため、伝達される熱の総量は制限されます。
    • 例: 高温の流体が 100°C で流入し、60°C で流出する場合、20°C で流入する低温の流体は 50°C 程度にしか達せず、熱伝達が少なくなります。

なぜそれが重要なのか熱伝達率(Q)はΔTに比例します(Q = U × A × ΔT、Uは熱伝達係数、Aは表面積)。向流式ではΔTが大きく一定であるため、平均熱伝達率が高くなり、効率が向上します。

2. 対数平均温度差(LMTD)

  • 熱交換器の効率は、多くの場合、熱伝達を促進する平均温度差を表す対数平均温度差 (LMTD) を使用して定量化されます。
  • 逆流熱交換器全体にわたって温度差が比較的一定に保たれるため、LMTDが高くなります。これにより、同じ表面積でより多くの熱を伝達できます。
  • 並列フロー出口に向かって温度差が大幅に低下し、熱伝達の駆動力が減少するため、LMTD は低くなります。
  • 結果同じ熱交換器のサイズの場合、向流の方が LMTD が高いためより多くの熱を伝達します。または、同じ熱伝達を達成するために必要な表面積が小さいため、よりコンパクトで効率的です。

3. 最大限の熱回収

  • 向流では、冷たい流体は理論的には熱い流体の入口温度に到達できるため(無限に長い熱交換器内)、ほぼ完全な熱回収が可能になります(例:Holtop の 3D クロス向流熱交換器などの最新設計では 90~95% の効率)。
  • 並流の場合、冷流体の出口温度は温流体の出口温度によって制限され、キャッピング効率(通常60~80℃)に影響されます。そのため、向流はエネルギー回収換気や最大限の熱回収が重要な産業プロセスなどの用途に最適です。

4. 実用的な意味合い

  • 逆流: 安定したΔTにより必要な伝熱面積が削減され、高性能アプリケーションにおいてより小型でコスト効率の高い設計が可能になります。HVAC、産業用冷却システム、エネルギー回収システムなどで広く使用されています。
  • 並列フローΔTの急激な低下により、同等の熱伝達を実現するためにはより大きな伝熱面積が必要となり、材料とスペースの要件が増加します。これは、基本的なラジエーターや教育設備など、よりシンプルで効率がそれほど重要でない用途で使用されます。

視覚的な説明(簡略版)

  • 逆流高温流体(100℃~40℃)と低温流体(20℃~90℃)を想像してみてください。熱交換器全体で温度差が比較的高く(例えば約20~60℃)、効率的な熱伝達が促進されます。
  • 並列フロー同じ流体は大きな ΔT (100°C – 20°C = 80°C) で始まりますが、すぐに収束し (例: 60°C – 50°C = 10°C)、駆動力が低下して効率が制限されます。

結論

向流は、熱交換器全体にわたってより大きく安定した温度差(ΔT)を維持するため、より効率的です。その結果、LMTDが高くなり、同じ表面積でより多くの熱伝達が得られます。そのため、エネルギー回収や産業プロセスなど、高効率が求められる用途では向流が好まれます。一方、並流はよりシンプルですが効率は低く、要求の厳しい用途には適しています。

向流熱交換器と並流熱交換器

Counterflow and parallel flow heat exchangers are two primary configurations for heat transfer between two fluids, differing in the direction of fluid flow and their impact on efficiency, temperature profiles, and applications. Below is a concise comparison based on their design, performance, and use cases.

1. Flow Configuration

  • 向流熱交換器:
    • Fluids flow in opposite directions (e.g., hot fluid enters at one end, cold fluid at the opposite end).
    • Example: Hot fluid flows left to right, cold fluid flows right to left.
  • Parallel Flow Heat Exchanger:
    • Fluids flow in the same direction (e.g., both hot and cold fluids enter at the same end and exit at the opposite end).
    • Example: Both fluids flow left to right.

2. Heat Transfer Efficiency

  • 逆流:
    • Higher efficiency: Maintains a larger temperature difference (ΔT) along the entire length of the exchanger, maximizing heat transfer per unit area.
    • Can achieve up to 90–95% thermal efficiency in well-designed systems (e.g., plate or tube exchangers).
    • The outlet temperature of the cold fluid can approach the inlet temperature of the hot fluid, making it ideal for applications requiring maximum heat recovery.
  • 並列フロー:
    • Lower efficiency: The temperature difference (ΔT) is highest at the inlet but decreases rapidly as both fluids approach thermal equilibrium along the exchanger.
    • Typically achieves 60–80% efficiency, as the cold fluid’s outlet temperature cannot exceed the hot fluid’s outlet temperature.
    • Less effective for applications needing near-complete heat transfer.

3. Temperature Profile

  • 逆流:
    • Temperature gradient is more uniform, with a near-constant ΔT across the exchanger.
    • Allows for a closer approach temperature (the difference between the hot fluid’s outlet and cold fluid’s inlet temperatures).
    • Example: Hot fluid enters at 100°C and exits at 40°C; cold fluid enters at 20°C and can exit close to 90°C.
  • 並列フロー:
    • Temperature difference is large at the inlet but diminishes along the exchanger, limiting heat transfer as fluids reach similar temperatures.
    • Example: Hot fluid enters at 100°C and exits at 60°C; cold fluid enters at 20°C and may only reach 50°C.

4. Design and Complexity

  • 逆流:
    • Often requires more complex piping or plate arrangements to ensure fluids flow in opposite directions, potentially increasing manufacturing costs.
    • Compact designs are possible due to higher efficiency, reducing material requirements for the same heat transfer rate.
  • 並列フロー:
    • Simpler design, as both fluids enter and exit at the same ends, reducing piping complexity.
    • May require a larger heat transfer area (longer or bigger exchanger) to achieve comparable heat transfer, increasing size and material costs.

5. Applications

  • 逆流:
    • Preferred in applications requiring high efficiency and maximum heat recovery, such as:
      • HVAC systems (e.g., energy recovery ventilators).
      • Industrial processes (e.g., chemical plants, power generation).
      • Wastewater heat recovery (e.g., shower heat exchangers).
      • Cryogenic systems where precise temperature control is critical.
    • Common in plate heat exchangers, double-pipe exchangers, and high-performance shell-and-tube designs.
  • 並列フロー:
    • Used in applications where simplicity is prioritized, or where complete heat transfer is not critical, such as:
      • Small-scale cooling systems (e.g., car radiators).
      • Processes where fluids must not exceed certain temperatures (e.g., to avoid overheating the cold fluid).
      • Educational or experimental setups due to simpler construction.
    • Common in basic tube-in-tube or shell-and-tube heat exchangers.

6. Advantages and Disadvantages

  • 逆流:
    • 利点:
      • Higher thermal efficiency, reducing energy losses.
      • Smaller size for the same heat transfer capacity.
      • Better suited for applications with large temperature differences.
    • Disadvantages:
      • More complex design and piping, potentially increasing costs.
      • May require additional measures to manage condensation or frost in cold environments.
  • 並列フロー:
    • 利点:
      • Simpler design, easier to manufacture and maintain.
      • Lower pressure drop in some cases, reducing pumping costs.
    • Disadvantages:
      • Lower efficiency, requiring larger heat transfer areas.
      • Limited by the outlet temperature constraint (cold fluid cannot exceed hot fluid’s outlet temperature).

7. Practical Considerations

  • 逆流:
    • Ideal for energy recovery systems (e.g., Holtop’s 3D cross-counterflow exchangers with 95% efficiency or RECUTECH’s RFK+ enthalpy exchangers).
    • Often equipped with features like hydrophilic coatings to manage condensation (e.g., Eri Corporation’s aluminum plate exchangers).
  • 並列フロー:
    • Used in applications where cost and simplicity outweigh efficiency needs, such as basic HVAC systems or small-scale industrial cooling.
    • Less common in modern high-efficiency designs due to performance limitations.

Summary Table

適切な熱交換器を選択するにはどうすればよいですか?

Choosing the right heat exchanger involves evaluating several key factors to ensure it meets your application’s needs while optimizing efficiency, cost, and performance. Here’s a concise guide to help you make an informed decision:

  1. Understand Your Application Requirements:
    • Fluid Properties: Identify the fluids involved (e.g., water, oil, or corrosive fluids) and their characteristics, such as viscosity, particulate content, and corrosiveness. Viscous fluids or those with particulates may require tubular or scraped-surface heat exchangers, while low-viscosity fluids work well with plate heat exchangers.
    • Thermal Requirements: Determine the required heat transfer rate, inlet and outlet temperatures, and whether phase changes (e.g., evaporation or condensation) are involved. Calculate the Initial Temperature Difference (ITD) by subtracting the incoming cold fluid temperature from the incoming hot fluid temperature to assess thermal performance needs.
    • 流量: Assess the flow rates of both fluids (e.g., liters per minute or gallons per minute) to ensure the heat exchanger can handle the throughput. For large-scale production, prioritize energy efficiency; for small batches, focus on minimizing product losses.
  2. Select the Appropriate Type:
    • プレート式熱交換器: Ideal for low to medium pressure, high-efficiency applications with simple fluids like milk or thin oils. They offer high heat transfer rates, compact size, and easy maintenance but are limited by gasket durability at high temperatures (up to 350°F) or pressures (up to 370 psi).
    • Shell-and-Tube Heat Exchangers: Suitable for high-pressure and high-temperature applications (e.g., oil and gas, chemical processing). They are robust and cost-effective but less efficient than plate designs and harder to clean.
    • Scraped-Surface Heat Exchangers: Best for highly viscous fluids, fluids with large particulates, or processes involving phase changes (e.g., ice cream, sauces). They are expensive but effective for continuous processing and fouling prevention.
    • Other Types: Consider air-cooled or compact heat exchangers for specific applications like automotive or space-constrained environments.
  3. Evaluate Operating Conditions:
    • Pressure and Temperature: Ensure the heat exchanger can handle the maximum design pressure and temperature. For high-pressure/temperature applications, shell-and-tube or specialized designs like dimple plates may be necessary.
    • Fouling and Maintenance: Assess the fouling potential of your fluids (e.g., sedimentation, biological growth). Plate heat exchangers are easier to clean, while scraped-surface designs reduce fouling in viscous applications. Specify fouling factors (e.g., 0.0002–0.001 m²K/W for tubular designs) to account for performance degradation.
    • 圧力降下: Calculate allowable pressure drop based on your system’s constraints (e.g., pump capacity). Designs with lower pressure drops, like shell-and-tube, can save energy.
  4. Consider Size and Space Constraints:
    • Evaluate available space for installation, maintenance, and potential expansion. Plate heat exchangers are compact and modular, allowing easy capacity adjustments by adding/removing plates. Oversizing by 30–40% can enable heat recovery if space permits.
    • For tight spaces, consider compact heat exchangers with high surface area-to-volume ratios (e.g., ≥700 m²/m³ for gas-to-gas applications).
  5. Material Selection:
    • Choose materials compatible with your fluids and operating conditions:
      • Stainless Steel: Durable, corrosion-resistant, and easy to clean, ideal for most applications.
      • Titanium: Lightweight, non-corrosive, suitable for extreme temperatures or chemical processes but costly.
      • Aluminum: Cost-effective for industrial applications but less corrosion-resistant.
      • Graphite or Ceramic: For highly corrosive or high-temperature fluids.
    • Ensure material compatibility with gaskets in plate heat exchangers to avoid failures.
  6. Cost and Efficiency:
    • Balance initial investment with long-term operational costs. Plate heat exchangers are typically the least expensive and most energy-efficient, while scraped-surface designs are costlier but necessary for specific applications.
    • Focus on total cost of ownership (TCO) over 3–4 years. Energy-efficient designs often have quick payback periods (e.g., <1 year for large-scale operations).
    • Consider eco-friendly options like ambient cooling for electrical enclosures to reduce energy costs.
  7. Consult Manufacturers and Use Tools:
    • Use manufacturer-provided comparison charts or performance graphs to match models to your thermal and flow requirements (e.g., W/°C for specific flow rates).
    • Seek professional advice to validate calculations and ensure the design meets safety and performance standards. Manufacturers can assist with sizing, installation, and maintenance planning.
  8. Avoid Common Pitfalls:
    • Don’t oversize unnecessarily if space is limited, as it increases costs without benefits.
    • Avoid selecting a design based solely on cost or tradition (e.g., assuming tubular is best for viscous fluids). Evaluate newer technologies like corrugated tube designs for better performance.
    • Ensure the heat exchanger aligns with process goals (e.g., pasteurization, cooling) to avoid quality issues or incomplete processing.

Example Calculation: For cooling a liquid from 80°C to 40°C using air at 21°C with a flow rate of 2 gpm, calculate ITD (80°C – 21°C = 59°C). Refer to performance graphs to select a model meeting the required heat transfer rate (e.g., 56 W/°C for a copper heat exchanger). Check pressure drop (e.g., 8 psi at 2 gpm) to ensure pump compatibility.

Recommendation: Start by defining your fluid properties, thermal needs, and space constraints. For simple fluids and space-limited setups, prioritize plate heat exchangers. For high-viscosity or particulate-laden fluids, consider scraped-surface or tubular designs. Consult with manufacturers to finalize the model and size, ensuring it aligns with your process and budget.

廃熱エネルギー回収システム:産業効率の変革

エネルギーコストと環境規制が喫緊の課題となっている今日の産業界において、廃熱回収システムは効率性と持続可能性を高める強力なソリューションを提供します。産業プロセスで発生する熱を回収・再利用することで、これらのシステムはエネルギーの無駄と排出量を削減します。淄博市齊宇空調エネルギー回収設備有限公司は、世界中の産業界のニーズに合わせた革新的な廃熱回収技術で業界をリードしています。

廃熱回収が重要な理由

鉄鋼、ガラス、石油化学などの産業活動では、膨大な量の廃熱が発生し、その量は総エネルギー投入量の30~50%に上ることがよくあります。この廃熱を熱交換器などの高度なシステムで回収することで、エネルギーコストと温室効果ガスの排出量を大幅に削減できます。廃熱回収は、原材料の予熱、タービンの駆動、施設の暖房などに利用されており、現代の産業効率の基盤となっています。

淄博市旗宇:熱回収ソリューションの先駆者

山東省淄博市に本社を置く淄博麒宇空調エネルギー回収設備有限公司は、空気対空気熱交換器、プレート式顕熱交換器、熱管式熱交換器など、最先端の廃熱回収システムを専門としています。同社のソリューションは、低温(175℃以下)から高温(240℃以上)の廃熱まで、幅広い熱源に対応できるよう設計されており、多様な産業に最適です。

Zibo Qiyuのモジュール式熱回収ユニットなどのシステムは、最大70%のエネルギー回収を実現し、運用コストを削減しながら環境目標の達成に貢献します。同社の製品は産業用空調・換気システムとシームレスに統合され、よりクリーンな空気と効率的なエネルギー利用を実現します。世界中に拠点を構え、15万社以上の顧客にサービスを提供するZibo Qiyuは、中国、北米、そしてその他の地域の産業向けに、信頼性の高いカスタマイズされたソリューションを提供しています。

Zibo Qiyu のシステムの利点

  1. コスト削減: 廃熱を回収し、エネルギー費用を大幅に削減します。

  2. 持続可能性: 二酸化炭素排出量を削減し、世界的な環境基準に準拠します。

  3. 多用途アプリケーション: 製造、化学処理、発電などの業界向けにカスタマイズされています。

  4. 信頼できるパフォーマンス: 世界的な専門知識と強力な顧客サポートに支えられています。

産業の持続可能性の未来を形作る

世界中の産業界がネットゼロ目標を目指す中、廃熱回収システムはエネルギー効率向上に向けた実用的な一歩です。Zibo Qiyuの最先端技術は、企業のコスト削減と環境への影響軽減を支援し、より環境に優しい産業の未来を切り開きます。

熱回収ソリューションについてはZibo Qiyuにお問い合わせください

Zibo Qiyuの高度なエネルギー回収システムで、廃熱の可能性を最大限に引き出しましょう。お客様に合わせた高性能ソリューションについては、今すぐお問い合わせください。

連絡先:

  • メール: kuns913@gmail.com

  • 電話: (+1) 9152953666

  • 微信: (+86) 15753355505

Zibo Qiyu の革新的な廃熱回収システムで業界の未来を活性化しましょう。

ヘルプが必要ですか?
ja日本語