著者アーカイブ シャオハイ

エチレングリコール熱回収換気ユニット

An ethylene glycol heat recovery ventilation unit is an air handling device that uses ethylene glycol solution as a heat transfer medium to recover heat or cooling energy from exhaust air, improving the energy efficiency of air conditioning systems. It is widely used in places requiring strict separation of fresh and exhaust air, such as hospitals, laboratories, and industrial facilities.

動作原理

The ethylene glycol heat recovery ventilation unit achieves energy recovery through a heat exchanger and ethylene glycol solution:

  1. Exhaust Side: The cooling or heating energy in the exhaust air is transferred to the ethylene glycol solution via a heat exchanger, altering the solution's temperature.
  2. Fresh Air Side: A circulation pump delivers the cooled or heated ethylene glycol solution to the fresh air side's heat exchanger, adjusting the fresh air temperature to reduce the operating load and energy consumption of the air conditioning system.
  3. Heat Recovery Efficiency: The heat recovery efficiency of the ethylene glycol solution can reach about 50%, depending on system design and operating conditions.

System Components

  • Fresh Air Side: Fresh air section, primary/medium efficiency filter section, ethylene glycol heat exchanger, and supply fan section.
  • Exhaust Side: Return air section, primary efficiency filter section, ethylene glycol heat exchanger, and exhaust fan section.

アプリケーション

  • Suitable for scenarios requiring complete isolation of fresh and exhaust air, such as hospitals and cleanrooms.
  • Ideal for industrial or commercial buildings needing efficient energy recovery, such as factories and transportation facilities.

利点

  • High Energy Efficiency: Reduces air conditioning system energy consumption through heat recovery, lowering operating costs.
  • Flexibility: Adjusts fresh air temperature based on varying climate conditions, adapting to diverse environments.
  • Safety: Ethylene glycol solution prevents heat exchanger freezing in low-temperature environments.

Considerations

  • メンテナンス: Regular checks on the ethylene glycol solution concentration and circulation pump operation are necessary.
  • Design Requirements: System design must consider the layout of fresh and exhaust air ducts to ensure efficient heat exchange and prevent cross-contamination.

液体循環エネルギー回収熱交換システム

液循環エネルギー回収熱交換システムは、エチレングリコール溶液を熱媒体として用い、排気側の熱交換器を通して排気中の冷気(熱)をエチレングリコール溶液に伝達し、エチレングリコール溶液の温度を低下(上昇)させます。そして、冷却(加熱)されたエチレングリコール溶液は循環ポンプを通して外気側の熱交換器に輸送され、外気の温度を低下(上昇)させ、外気システムの負荷を軽減し、空調システム全体の運転コストを削減します。

液体循環エネルギー回収循環システムは、排気側熱交換器、外気側熱交換器、接続配管、および必要な付属品で構成されています。エネルギー回収はエチレングリコール溶液循環ポンプを介して行われ、システム全体は比較的複雑です。エチレングリコール熱回収モジュールは、循環システムにおける多数の接続部品と複雑な構造の問題を解決し、熱交換システムの信頼性と安全性を向上させます。外気と排気は相互汚染を生じないため、給排気を完全に分離し、さらには遠隔地の給気システムにも適しています。

Liquid circulation energy recovery heat exchange system

液体循環エネルギー回収熱交換システム

乾燥時の排気ガスから熱を回収する方法

工業用乾燥プロセスの排ガスから熱を回収することは、エネルギー効率の向上、コスト削減、そして排出量の削減に効果的な方法です。以下は、乾燥機の排ガスから熱を回収する方法について、実用的な手順、技術、そして考慮すべき事項に焦点を当てた簡潔なガイドです。空気対空気熱交換器と廃熱回収システムへの関心に合わせて構成されています。

乾燥機の排気ガスから熱を回収する手順

  1. 排気ガス特性の評価:
    • 排気の温度(乾燥機の場合は通常 60°C 以上)、流量、および排気の組成(水分、ほこり、腐食性元素など)を測定します。
    • 顕熱量(温度ベース)と潜熱量(水分ベース)を決定します。
    • 例: 食品加工におけるスプレードライヤーの排気は、湿度が高く、80~150°Cになる場合があります。
  2. ヒートシンクの機会を特定する:
    • 乾燥機の入口空気の予熱、プロセス水の加熱、施設 HVAC の供給など、回収された熱を利用できる近くのプロセスを見つけます。
    • 効率を最大限に高めるには、直接統合(例:乾燥機の空気の予熱)を優先します。
  3. 適切な熱回収技術を選択する:
    • 空気対空気熱交換器 (主な焦点):
      • プレート式熱交換器排気熱を吸気へ伝達するために、金属またはポリマープレートを使用します。ポリマープレートは、湿気や埃を含んだ排気による腐食や汚れを防ぎます。
      • ロータリー熱交換器: 回転するホイールが熱を伝達するため、大量の流量に最適です。
      • 応用: 乾燥機の吸入空気を予熱し、燃料使用量を最大 20% 削減します。
    • 空気液体熱交換器:
      • プロセス加熱やボイラー給水のために水または熱媒油に熱を伝達します。
      • 応用食品工場や化学工場の洗浄水を加熱します。
    • ヒートポンプ:
      • 低温の排熱をアップグレードし、乾燥などのプロセスで再利用します。
      • 応用: 乳製品加工における乾燥機の空気予熱用の昇温装置。
    • 直接接触型熱交換器:
      • 排気ガスは水と接触して熱を回収し、汚染物質を除去します。
      • 応用: 酸性排気のある窯や乾燥機に適しています。
    • 廃熱ボイラー:
      • 高温排気から蒸気を発生させ、プロセスや電力に利用します。
      • 応用: セラミック製の高温乾燥機。
  4. システムの設計とインストール:
    • サプライヤーと協力して、乾燥機の排気条件とヒートシンクのニーズに合わせたシステムを設計します。
    • 材料(ポリマーやステンレス鋼など)が汚れや腐食に耐えられることを確認します。
    • 乾燥機の下流に熱交換器を設置し、ほこりがある場合はフィルターまたはスクラバーも設置します。
    • 例: ポリマー空気対空気交換器をスプレードライヤーに後付けして、吸入空気を予熱し、エネルギーコストを削減できます。
  5. パフォーマンスの監視と最適化:
    • センサーを使用して、温度、流量、熱回収の効率を追跡します。
    • 汚れを防ぐために熱交換器を定期的に清掃してください。
    • 生産需要に基づいて熱伝達を最大化するようにシステム設定を調整します。

工業用乾燥機向け廃熱回収システム

Waste heat recovery systems for industrial dryers capture and reuse thermal energy from hot exhaust gases or air streams to improve energy efficiency, reduce operating costs, and lower emissions. These systems are valuable for energy-intensive drying processes in industries like chemical, food, ceramics, and textiles. Below, I outline key technologies, benefits, and U.S.-based suppliers with contact information.

Key Technologies for Waste Heat Recovery in Industrial Dryers
Industrial dryers produce hot, moist exhaust air containing sensible and latent heat. Recovery systems extract this heat for reuse. Common technologies include:

Air-to-Air Heat Exchangers:
Transfer heat from hot exhaust air to incoming fresh air via plate or rotary heat exchangers. Polymer air preheaters resist corrosion and fouling.
Applications: Preheating dryer inlet air, reducing fuel consumption by up to 20%.
Advantages: Simple, cost-effective, low maintenance.
Air-to-Liquid Heat Exchangers:
Capture heat from exhaust to warm liquids for process heating or facility HVAC.
Applications: Heating process water in food processing plants.
Advantages: Versatile heat reuse.
Heat Pumps:
Upgrade low-temperature waste heat to higher temperatures for reuse.
Applications: Lifting heat for dryer air preheating in chemical or dairy industries.
Advantages: High efficiency for low-temperature sources.
Direct Contact Heat Exchangers:
Hot exhaust gases directly contact a liquid to transfer heat, often cleaning flue gas contaminants.
Applications: Recovering heat from kilns, ovens, or dryers.
Advantages: Cleans exhaust while recovering heat.
Waste Heat Boilers:
Convert high-temperature exhaust into steam for process use or power generation.
Applications: High-temperature dryers in ceramics or minerals processing.
Advantages: Generates steam or electricity.
Benefits of Waste Heat Recovery for Dryers
Energy Savings: Efficiency improvements of up to 20%.
CO2 Reduction: Every 1% efficiency gain cuts CO2 emissions by 1%.
Cost Reduction: Payback periods from months to 3 years.
Environmental Compliance: Reduces emissions and waste heat release.
Process Optimization: Stable temperatures enhance product quality.
Challenges and Solutions
Fouling and Corrosion: Polymer heat exchangers or in-line cleaning systems mitigate issues.
Heat Sink Availability: Requires nearby heat use for economical integration.
System Design: Custom engineering ensures compatibility.

乾燥装置におけるガスツーガス熱回収技術の省エネ性能

ガスツーガス熱回収技術は、高温の排気ガスから廃熱を回収し、それを流入する冷気へ転換することで、乾燥設備のエネルギー効率を大幅に向上させます。このプロセスにより、新鮮な空気を加熱するためのエネルギー需要が削減され、燃料消費量と運用コストが削減されます。

乾燥システム、特に食品加工、タバコ、製紙、汚泥処理などの業界では、排気によって大量の熱エネルギーが失われることがよくあります。ガス対ガス熱交換器(一般的にはアルミニウムまたはステンレス鋼箔で作られています)を組み込むことで、この廃熱を回収し、再利用することができます。回収されたエネルギーは、システム構成と運転条件に応じて、入口空気を30~70℃予熱することができます。

現場での実証実験では、ガスツーガス熱回収システムの使用により、エネルギー消費量を15%~35%削減し、乾燥サイクルを短縮し、システム全体の効率を向上させることが示されています。さらに、二酸化炭素排出量の削減と熱制御の改善にも貢献するため、現代の乾燥プロセスにとって持続可能で費用対効果の高いソリューションとなります。

熱回収外気ユニット

The heat recovery fresh air unit is an energy-efficient ventilation system that introduces fresh outdoor air while recovering heat from the exhaust air. It uses a heat exchanger—typically a plate-type or rotary wheel exchanger—to transfer thermal energy between incoming and outgoing airstreams without mixing them, significantly reducing heating or cooling loads.

Constructed with high-efficiency filters, fans, and a heat exchanger core (commonly aluminum or enthalpy material), the system ensures a continuous supply of fresh air while maintaining indoor temperature stability and improving air quality. It helps reduce energy consumption, enhance indoor comfort, and comply with modern building energy-saving standards.

These units are ideal for applications in offices, factories, schools, hospitals, and other facilities requiring reliable ventilation and temperature control with reduced operating costs.

産業用熱回収ボックス、廃ガスおよび熱回収、ガス対ガス熱交換器

産業用熱回収ボックスは、様々な産業用途における排ガス流から熱を回収するために設計された、コンパクトで効率的なシステムです。ガス対ガス熱交換器を用いて、高温の排ガスから流入する新鮮な空気へ熱エネルギーを伝達し、2つの気流を混合させることなく、熱エネルギーを放出します。このプロセスにより、追加の加熱の必要性が低減され、エネルギー効率が大幅に向上し、運用コストの削減と環境への影響の軽減につながります。

アルミニウムやステンレス鋼などの耐久性の高い材料で構築されたこのシステムは、高温および腐食性環境に耐えることができます。内部の熱交換器は、多くの場合アルミ箔またはアルミ板で構成されており、高い熱伝導性と効率的な熱伝達を実現します。この設計により、汚れた排気と清浄な給気の相互汚染を防ぎ、食品加工、タバコ、印刷、化学、汚泥処理などの産業に適しています。

この省エネソリューションは、廃熱を回収するだけでなく、室内空気質の改善と安定した生産環境の維持にも役立ちます。設置とメンテナンスが容易な産業用熱回収ボックスは、持続可能性の向上と省エネ規制の遵守を目指す工場にとって賢明な選択肢です。

Industrial heat recovery box, waste gas and heat recovery, gas to gas heat exchanger

産業用熱回収ボックス、廃ガスおよび熱回収、ガス対ガス熱交換器

炭素取引市場の国際的な状況

I. 主要な炭素取引市場の概要

1. 欧州連合排出量取引制度(EU ETS)

  • 打ち上げ: 2005年、世界初かつ最も成熟した炭素市場。

  • カバレッジ: 発電、製造、航空など。

  • 特徴: 毎年減少する排出枠を伴うキャップアンドトレード制度。世界的な価格ベンチマークとして機能します。

  • 発達: 現在はフェーズIV(2021~2030年)にあり、排出上限が厳しくなり、対象範囲が拡大されています。

2. 中国国家炭素市場

  • 打ち上げ: 2021年に正式に開始され、当初は電力部門を対象とします。

  • 範囲: 対象となるCO₂排出量で最大の炭素市場。

  • 機構: 手当に基づき、地域のパイロット (北京、上海、広東など) の経験を活用します。

  • 未来鉄鋼やセメントなど排出量の多い他の産業にも拡大する計画。

3. 米国地域炭素市場

  • 連邦市場なしただし、2 つの主要な地域システムが存在します。

    • カリフォルニア州キャップ・アンド・トレード制度: ケベックと連携し、非常に活発かつ包括的。

    • 地域温室効果ガスイニシアチブ(RGGI)米国北東部の州の電力発電をカバーします。

  • 特徴: 市場ベース、自発的な参加、堅牢な設計。

4. その他の国と地域

  • 韓国: 韓国ETS(K-ETS)は2015年に開始され、着実に発展しています。

  • ニュージーランド: 国際的な炭素クレジットを可能にする柔軟な ETS を運営します。

  • カナダケベック州やオンタリオ州などの州は独自の市場を運営しており、ケベック州はカリフォルニア州とつながっています。


II. 炭素市場メカニズムの種類

1. コンプライアンス市場

  • 政府義務 企業に排出量上限を守らせ、そうでなければ罰金を科すシステム。

  • : EU ETS、中国の国内市場、カリフォルニアのシステム。

2. 自主炭素市場(VCM)

  • 必須ではない 参加; 組織または個人が炭素クレジットを購入して排出量を相殺します。

  • 一般的なプロジェクトの種類: 林業(炭素吸収源)、再生可能エネルギー、エネルギー効率。

  • 認証機関:Verra(VCS)、Gold Standardなど


III. 世界的な動向と統合

  1. 市場間の相互接続性の高まり

    • 例: カリフォルニア州とケベック州には炭素市場が連携しています。

    • 議論中:EUはスイスなどとの連携の可能性を検討中。

  2. 炭素国境調整メカニズム(CBAM)

    • EUが提案するCBAMは、炭素含有量の高い輸入品に課税し、他国に炭素価格設定制度を導入するよう圧力をかけることになる。

  3. 国境を越えた炭素クレジットの流れ

    • の下で パリ協定第6条世界的な炭素取引の標準化と規模拡大を目指し、国際的な炭素クレジット交換の枠組みが形成されつつあります。

  4. 国別決定貢献(NDC)との統合

    • NDC目標を達成するために、炭素市場を国家気候戦略に組み込む国が増えています。


IV. 課題と機会

課題:

  • 多様な規則や基準が市場の連携を妨げている。

  • 自主市場の質はさまざまであり、監視も一貫していない。

  • 炭素価格の変動は企業の計画に影響を及ぼす可能性があります。

機会:

  • ネットゼロ目標は炭素市場の急速な発展を促進します。

  • 技術の進歩(MRV システム、ブロックチェーンなど)により透明性が向上します。

  • 金融セクターの関与の拡大、 炭素市場の金融化.

産業用換気熱回収システムの概要

産業用換気熱回収システムは、排気から廃熱を回収し、それを新鮮な空気に転換することで、産業施設のエネルギー効率を向上させるように設計されています。これらのシステムは、エネルギー消費量を削減し、運用コストを削減し、熱損失を最小限に抑えることで環境の持続可能性に貢献します。

主要コンポーネント

  1. 熱交換器熱伝達が発生するコア部品。一般的な種類は以下のとおりです。
    • プレート式熱交換器: 金属板を使用して空気の流れの間で熱を伝達します。
    • ロータリー熱交換器回転ホイールを使用して熱を伝達し、場合によっては水分も伝達します。
    • ヒートパイプ: 効率的な熱伝達のために作動流体を備えた密閉チューブを使用します。
    • ランアラウンドコイル: 流体ループを使用して、空気の流れの間で熱を伝達します。
  2. 換気システム: 空気の流れを管理するためのファン、ダクト、フィルターが含まれます。
  3. 制御システム: 温度、気流、システム パフォーマンスを監視および調整して、効率を最適化します。
  4. バイパスメカニズム: 必要のない状況では(例:夏の冷房)、システムが熱回収をバイパスできるようにします。

動作原理

  • 排気: 工業プロセス(製造、乾燥など)からの温風が抽出されます。
  • 熱伝達熱交換器は排気から熱エネルギーを捕捉し、2 つの空気の流れを混合せずに、より冷たい新鮮な空気に伝達します。
  • 供給空気: 予熱された新鮮な空気が施設内に分配され、追加の暖房の必要性が減ります。
  • エネルギー節約: 50~80%(システムによって異なります)の廃熱を回収することで、ボイラーや炉などの暖房システムへの需要が大幅に削減されます。

システムの種類

  1. 空気対空気熱回収: 排気と給気の流れの間で熱を直接伝達します。
  2. 空気から水への熱回収: 加熱システムまたは加熱プロセスで使用するために液体媒体 (水など) に熱を伝達します。
  3. 複合システム: 熱回収を湿度制御や冷却などの他のプロセスと統合します。

利点

  • エネルギー効率: 暖房にかかるエネルギー消費量を 20 ~ 50% 削減します。
  • コスト削減: 光熱費と運用コストを削減します。
  • 環境への影響化石燃料への依存を減らすことで温室効果ガスの排出を削減します。
  • 室内空気質の改善: 快適な温度を保ちながら適切な換気を確保します。
  • コンプライアンス: エネルギー効率と環境規制の遵守に役立ちます。

アプリケーション

  • 製造工場(例:化学、食品加工、繊維)
  • 倉庫と配送センター
  • データセンター
  • 医薬品およびクリーンルーム施設
  • 換気需要の高い商業ビル

課題

  • 初期費用: 導入に高額な先行投資が必要です。
  • メンテナンス: 効率を維持するために、熱交換器とフィルターの定期的な清掃が必要です。
  • システム設計: 特定の産業プロセスおよび気候に合わせて調整する必要があります。
  • スペース要件: 大規模なシステムでは、大きな設置スペースが必要になる場合があります。

トレンドとイノベーション

  • リアルタイムの監視と最適化のための IoT との統合。
  • 効率と耐久性を向上させる熱交換器用の先進材料。
  • 熱回収と再生可能エネルギー源(太陽光や地熱など)を組み合わせたハイブリッド システム。
  • より簡単なインストールと拡張性を実現するモジュール設計。

産業用換気熱回収システムは、エネルギー集約型産業にとって重要なソリューションであり、効率的で持続可能な運用を確保しながら、経済的利益と環境的利益のバランスを実現します。

スプレー乾燥熱回収における空気対空気熱交換器の仕組み

In spray drying heat recovery, an 空気対空気熱交換器 is used to recover waste heat from the hot, moist exhaust air leaving the drying chamber and transfer it to the incoming fresh (but cooler) air. This reduces the energy demand of the drying process significantly.

How It Works:

  1. Exhaust Air Collection:

    • After spray drying, hot exhaust air (often 80–120°C) contains both heat and water vapor.

    • This air is pulled out of the chamber and sent to the heat exchanger.

  2. Heat Exchange Process:

    • The hot exhaust air flows through one side of the heat exchanger (often made of corrosion-resistant materials due to possible stickiness or mild acidity).

    • At the same time, cool ambient air flows through the other side, in a separate channel (counter-flow or cross-flow setup).

    • Heat is transferred through the exchanger walls from the hot side to the cool side, without mixing the air streams.

  3. Preheating Incoming Air:

    • The incoming fresh air gets preheated before entering the spray dryer’s main heater (gas burner or steam coil).

    • This lowers the fuel or energy required to reach the desired drying temperature (typically 150–250°C at the inlet).

  4. Exhaust Air Post-Treatment (optional):

    • After heat extraction, the cooler exhaust air can be filtered or treated for dust and moisture before being released or further used.

Benefits:

  • Energy Savings: Cuts down fuel or steam consumption by 10–30% depending on setup.

  • Lower Operating Costs: Less energy input reduces utility expenses.

  • Environmental Impact: Reduces CO₂ emissions by improving energy efficiency.

  • Temperature Stability: Helps maintain consistent drying performance.

ヘルプが必要ですか?
ja日本語