著者アーカイブ シャオハイ

向流は並流よりもなぜ効率的なのでしょうか?

Counter-current flow (counterflow) is more efficient than parallel flow in heat exchangers because it maintains a larger and more consistent temperature difference (ΔT) between the two fluids throughout the exchanger, maximizing heat transfer. Here's a detailed explanation:

1. Temperature Gradient and Heat Transfer

  • Counterflow:
    • In counterflow, fluids flow in opposite directions (e.g., hot fluid enters at one end, cold fluid at the opposite end). This creates a nearly constant temperature difference (ΔT) along the entire length of the exchanger.
    • The hot fluid’s highest temperature (inlet) meets the cold fluid’s outlet, and the cold fluid’s lowest temperature (inlet) meets the hot fluid’s outlet. This allows the cold fluid to approach the hot fluid’s inlet temperature, maximizing heat transfer.
    • Example: If the hot fluid enters at 100°C and exits at 40°C, and the cold fluid enters at 20°C, it can exit close to 90°C, achieving a high heat transfer rate.
  • Parallel Flow:
    • In parallel flow, both fluids flow in the same direction, so the largest ΔT occurs at the inlet, but it rapidly decreases as both fluids approach similar temperatures along the exchanger.
    • The cold fluid’s outlet temperature cannot exceed the hot fluid’s outlet temperature, limiting the total heat transferred.
    • Example: If the hot fluid enters at 100°C and exits at 60°C, the cold fluid entering at 20°C may only reach ~50°C, resulting in less heat transfer.

Why it matters: Heat transfer rate (Q) is proportional to ΔT (Q = U × A × ΔT, where U is the heat transfer coefficient and A is the surface area). Counterflow’s larger and more consistent ΔT results in a higher average heat transfer rate, making it more efficient.

2. Log Mean Temperature Difference (LMTD)

  • The efficiency of a heat exchanger is often quantified using the Log Mean Temperature Difference (LMTD), which represents the average temperature difference driving heat transfer.
  • Counterflow: Has a higher LMTD because the temperature difference remains relatively constant along the exchanger. This allows more heat to be transferred for the same surface area.
  • Parallel Flow: Has a lower LMTD because the temperature difference drops significantly toward the outlet, reducing the driving force for heat transfer.
  • Result: For the same heat exchanger size, counterflow transfers more heat due to its higher LMTD, or it requires a smaller surface area to achieve the same heat transfer, making it more compact and efficient.

3. Maximum Heat Recovery

  • In counterflow, the cold fluid can theoretically reach the hot fluid’s inlet temperature (in an infinitely long exchanger), allowing near-complete heat recovery (e.g., 90–95% efficiency in modern designs like Holtop’s 3D cross-counterflow exchangers).
  • In parallel flow, the cold fluid’s outlet temperature is limited by the hot fluid’s outlet temperature, capping efficiency (typically 60–80%). This makes counterflow ideal for applications like energy recovery ventilation or industrial processes where maximum heat recovery is critical.

4. Practical Implications

  • Counterflow: The consistent ΔT reduces the required heat transfer area, leading to smaller, more cost-effective designs for high-performance applications. It’s widely used in HVAC, industrial cooling, and energy recovery systems.
  • Parallel Flow: The rapid decrease in ΔT requires a larger heat transfer area to achieve comparable heat transfer, increasing material and space requirements. It’s used in simpler, less efficiency-critical applications like basic radiators or educational setups.

Visual Explanation (Simplified)

  • Counterflow: Imagine a hot fluid (100°C to 40°C) and a cold fluid (20°C to 90°C). The temperature difference stays relatively high (e.g., ~20–60°C) across the exchanger, driving efficient heat transfer.
  • Parallel Flow: The same fluids start with a large ΔT (100°C – 20°C = 80°C) but quickly converge (e.g., 60°C – 50°C = 10°C), reducing the driving force and limiting efficiency.

Conclusion

Counter-current flow is more efficient because it sustains a larger and more consistent temperature difference (ΔT) along the exchanger, resulting in a higher LMTD and greater heat transfer for the same surface area. This makes it the preferred choice for applications requiring high efficiency, such as energy recovery or industrial processes, while parallel flow is simpler but less effective, suited for less demanding applications.

向流熱交換器と並流熱交換器

Counterflow and parallel flow heat exchangers are two primary configurations for heat transfer between two fluids, differing in the direction of fluid flow and their impact on efficiency, temperature profiles, and applications. Below is a concise comparison based on their design, performance, and use cases.

1. Flow Configuration

  • Counterflow Heat Exchanger:
    • Fluids flow in opposite directions (e.g., hot fluid enters at one end, cold fluid at the opposite end).
    • Example: Hot fluid flows left to right, cold fluid flows right to left.
  • Parallel Flow Heat Exchanger:
    • Fluids flow in the same direction (e.g., both hot and cold fluids enter at the same end and exit at the opposite end).
    • Example: Both fluids flow left to right.

2. Heat Transfer Efficiency

  • Counterflow:
    • Higher efficiency: Maintains a larger temperature difference (ΔT) along the entire length of the exchanger, maximizing heat transfer per unit area.
    • Can achieve up to 90–95% thermal efficiency in well-designed systems (e.g., plate or tube exchangers).
    • The outlet temperature of the cold fluid can approach the inlet temperature of the hot fluid, making it ideal for applications requiring maximum heat recovery.
  • Parallel Flow:
    • Lower efficiency: The temperature difference (ΔT) is highest at the inlet but decreases rapidly as both fluids approach thermal equilibrium along the exchanger.
    • Typically achieves 60–80% efficiency, as the cold fluid’s outlet temperature cannot exceed the hot fluid’s outlet temperature.
    • Less effective for applications needing near-complete heat transfer.

3. Temperature Profile

  • Counterflow:
    • Temperature gradient is more uniform, with a near-constant ΔT across the exchanger.
    • Allows for a closer approach temperature (the difference between the hot fluid’s outlet and cold fluid’s inlet temperatures).
    • Example: Hot fluid enters at 100°C and exits at 40°C; cold fluid enters at 20°C and can exit close to 90°C.
  • Parallel Flow:
    • Temperature difference is large at the inlet but diminishes along the exchanger, limiting heat transfer as fluids reach similar temperatures.
    • Example: Hot fluid enters at 100°C and exits at 60°C; cold fluid enters at 20°C and may only reach 50°C.

4. Design and Complexity

  • Counterflow:
    • Often requires more complex piping or plate arrangements to ensure fluids flow in opposite directions, potentially increasing manufacturing costs.
    • Compact designs are possible due to higher efficiency, reducing material requirements for the same heat transfer rate.
  • Parallel Flow:
    • Simpler design, as both fluids enter and exit at the same ends, reducing piping complexity.
    • May require a larger heat transfer area (longer or bigger exchanger) to achieve comparable heat transfer, increasing size and material costs.

5. Applications

  • Counterflow:
    • Preferred in applications requiring high efficiency and maximum heat recovery, such as:
      • HVAC systems (e.g., energy recovery ventilators).
      • Industrial processes (e.g., chemical plants, power generation).
      • Wastewater heat recovery (e.g., shower heat exchangers).
      • Cryogenic systems where precise temperature control is critical.
    • Common in plate heat exchangers, double-pipe exchangers, and high-performance shell-and-tube designs.
  • Parallel Flow:
    • Used in applications where simplicity is prioritized, or where complete heat transfer is not critical, such as:
      • Small-scale cooling systems (e.g., car radiators).
      • Processes where fluids must not exceed certain temperatures (e.g., to avoid overheating the cold fluid).
      • Educational or experimental setups due to simpler construction.
    • Common in basic tube-in-tube or shell-and-tube heat exchangers.

6. Advantages and Disadvantages

  • Counterflow:
    • 利点:
      • Higher thermal efficiency, reducing energy losses.
      • Smaller size for the same heat transfer capacity.
      • Better suited for applications with large temperature differences.
    • Disadvantages:
      • More complex design and piping, potentially increasing costs.
      • May require additional measures to manage condensation or frost in cold environments.
  • Parallel Flow:
    • 利点:
      • Simpler design, easier to manufacture and maintain.
      • Lower pressure drop in some cases, reducing pumping costs.
    • Disadvantages:
      • Lower efficiency, requiring larger heat transfer areas.
      • Limited by the outlet temperature constraint (cold fluid cannot exceed hot fluid’s outlet temperature).

7. Practical Considerations

  • Counterflow:
    • Ideal for energy recovery systems (e.g., Holtop’s 3D cross-counterflow exchangers with 95% efficiency or RECUTECH’s RFK+ enthalpy exchangers).
    • Often equipped with features like hydrophilic coatings to manage condensation (e.g., Eri Corporation’s aluminum plate exchangers).
  • Parallel Flow:
    • Used in applications where cost and simplicity outweigh efficiency needs, such as basic HVAC systems or small-scale industrial cooling.
    • Less common in modern high-efficiency designs due to performance limitations.

Summary Table

適切な熱交換器を選択するにはどうすればよいですか?

Choosing the right heat exchanger involves evaluating several key factors to ensure it meets your application’s needs while optimizing efficiency, cost, and performance. Here’s a concise guide to help you make an informed decision:

  1. Understand Your Application Requirements:
    • Fluid Properties: Identify the fluids involved (e.g., water, oil, or corrosive fluids) and their characteristics, such as viscosity, particulate content, and corrosiveness. Viscous fluids or those with particulates may require tubular or scraped-surface heat exchangers, while low-viscosity fluids work well with plate heat exchangers.
    • Thermal Requirements: Determine the required heat transfer rate, inlet and outlet temperatures, and whether phase changes (e.g., evaporation or condensation) are involved. Calculate the Initial Temperature Difference (ITD) by subtracting the incoming cold fluid temperature from the incoming hot fluid temperature to assess thermal performance needs.
    • Flow Rates: Assess the flow rates of both fluids (e.g., liters per minute or gallons per minute) to ensure the heat exchanger can handle the throughput. For large-scale production, prioritize energy efficiency; for small batches, focus on minimizing product losses.
  2. Select the Appropriate Type:
    • プレート式熱交換器: Ideal for low to medium pressure, high-efficiency applications with simple fluids like milk or thin oils. They offer high heat transfer rates, compact size, and easy maintenance but are limited by gasket durability at high temperatures (up to 350°F) or pressures (up to 370 psi).
    • Shell-and-Tube Heat Exchangers: Suitable for high-pressure and high-temperature applications (e.g., oil and gas, chemical processing). They are robust and cost-effective but less efficient than plate designs and harder to clean.
    • Scraped-Surface Heat Exchangers: Best for highly viscous fluids, fluids with large particulates, or processes involving phase changes (e.g., ice cream, sauces). They are expensive but effective for continuous processing and fouling prevention.
    • Other Types: Consider air-cooled or compact heat exchangers for specific applications like automotive or space-constrained environments.
  3. Evaluate Operating Conditions:
    • Pressure and Temperature: Ensure the heat exchanger can handle the maximum design pressure and temperature. For high-pressure/temperature applications, shell-and-tube or specialized designs like dimple plates may be necessary.
    • Fouling and Maintenance: Assess the fouling potential of your fluids (e.g., sedimentation, biological growth). Plate heat exchangers are easier to clean, while scraped-surface designs reduce fouling in viscous applications. Specify fouling factors (e.g., 0.0002–0.001 m²K/W for tubular designs) to account for performance degradation.
    • Pressure Drop: Calculate allowable pressure drop based on your system’s constraints (e.g., pump capacity). Designs with lower pressure drops, like shell-and-tube, can save energy.
  4. Consider Size and Space Constraints:
    • Evaluate available space for installation, maintenance, and potential expansion. Plate heat exchangers are compact and modular, allowing easy capacity adjustments by adding/removing plates. Oversizing by 30–40% can enable heat recovery if space permits.
    • For tight spaces, consider compact heat exchangers with high surface area-to-volume ratios (e.g., ≥700 m²/m³ for gas-to-gas applications).
  5. Material Selection:
    • Choose materials compatible with your fluids and operating conditions:
      • Stainless Steel: Durable, corrosion-resistant, and easy to clean, ideal for most applications.
      • Titanium: Lightweight, non-corrosive, suitable for extreme temperatures or chemical processes but costly.
      • Aluminum: Cost-effective for industrial applications but less corrosion-resistant.
      • Graphite or Ceramic: For highly corrosive or high-temperature fluids.
    • Ensure material compatibility with gaskets in plate heat exchangers to avoid failures.
  6. Cost and Efficiency:
    • Balance initial investment with long-term operational costs. Plate heat exchangers are typically the least expensive and most energy-efficient, while scraped-surface designs are costlier but necessary for specific applications.
    • Focus on total cost of ownership (TCO) over 3–4 years. Energy-efficient designs often have quick payback periods (e.g., <1 year for large-scale operations).
    • Consider eco-friendly options like ambient cooling for electrical enclosures to reduce energy costs.
  7. Consult Manufacturers and Use Tools:
    • Use manufacturer-provided comparison charts or performance graphs to match models to your thermal and flow requirements (e.g., W/°C for specific flow rates).
    • Seek professional advice to validate calculations and ensure the design meets safety and performance standards. Manufacturers can assist with sizing, installation, and maintenance planning.
  8. Avoid Common Pitfalls:
    • Don’t oversize unnecessarily if space is limited, as it increases costs without benefits.
    • Avoid selecting a design based solely on cost or tradition (e.g., assuming tubular is best for viscous fluids). Evaluate newer technologies like corrugated tube designs for better performance.
    • Ensure the heat exchanger aligns with process goals (e.g., pasteurization, cooling) to avoid quality issues or incomplete processing.

Example Calculation: For cooling a liquid from 80°C to 40°C using air at 21°C with a flow rate of 2 gpm, calculate ITD (80°C – 21°C = 59°C). Refer to performance graphs to select a model meeting the required heat transfer rate (e.g., 56 W/°C for a copper heat exchanger). Check pressure drop (e.g., 8 psi at 2 gpm) to ensure pump compatibility.

Recommendation: Start by defining your fluid properties, thermal needs, and space constraints. For simple fluids and space-limited setups, prioritize plate heat exchangers. For high-viscosity or particulate-laden fluids, consider scraped-surface or tubular designs. Consult with manufacturers to finalize the model and size, ensuring it aligns with your process and budget.

廃熱エネルギー回収システム:産業効率の変革

エネルギーコストと環境規制が喫緊の課題となっている今日の産業界において、廃熱回収システムは効率性と持続可能性を高める強力なソリューションを提供します。産業プロセスで発生する熱を回収・再利用することで、これらのシステムはエネルギーの無駄と排出量を削減します。淄博市齊宇空調エネルギー回収設備有限公司は、世界中の産業界のニーズに合わせた革新的な廃熱回収技術で業界をリードしています。

廃熱回収が重要な理由

鉄鋼、ガラス、石油化学などの産業活動では、膨大な量の廃熱が発生し、その量は総エネルギー投入量の30~50%に上ることがよくあります。この廃熱を熱交換器などの高度なシステムで回収することで、エネルギーコストと温室効果ガスの排出量を大幅に削減できます。廃熱回収は、原材料の予熱、タービンの駆動、施設の暖房などに利用されており、現代の産業効率の基盤となっています。

淄博市旗宇:熱回収ソリューションの先駆者

山東省淄博市に本社を置く淄博麒宇空調エネルギー回収設備有限公司は、空気対空気熱交換器、プレート式顕熱交換器、熱管式熱交換器など、最先端の廃熱回収システムを専門としています。同社のソリューションは、低温(175℃以下)から高温(240℃以上)の廃熱まで、幅広い熱源に対応できるよう設計されており、多様な産業に最適です。

Zibo Qiyuのモジュール式熱回収ユニットなどのシステムは、最大70%のエネルギー回収を実現し、運用コストを削減しながら環境目標の達成に貢献します。同社の製品は産業用空調・換気システムとシームレスに統合され、よりクリーンな空気と効率的なエネルギー利用を実現します。世界中に拠点を構え、15万社以上の顧客にサービスを提供するZibo Qiyuは、中国、北米、そしてその他の地域の産業向けに、信頼性の高いカスタマイズされたソリューションを提供しています。

Zibo Qiyu のシステムの利点

  1. コスト削減: 廃熱を回収し、エネルギー費用を大幅に削減します。

  2. 持続可能性: 二酸化炭素排出量を削減し、世界的な環境基準に準拠します。

  3. 多用途アプリケーション: 製造、化学処理、発電などの業界向けにカスタマイズされています。

  4. 信頼できるパフォーマンス: 世界的な専門知識と強力な顧客サポートに支えられています。

産業の持続可能性の未来を形作る

世界中の産業界がネットゼロ目標を目指す中、廃熱回収システムはエネルギー効率向上に向けた実用的な一歩です。Zibo Qiyuの最先端技術は、企業のコスト削減と環境への影響軽減を支援し、より環境に優しい産業の未来を切り開きます。

熱回収ソリューションについてはZibo Qiyuにお問い合わせください

Zibo Qiyuの高度なエネルギー回収システムで、廃熱の可能性を最大限に引き出しましょう。お客様に合わせた高性能ソリューションについては、今すぐお問い合わせください。

連絡先:

  • メール: kuns913@gmail.com

  • 電話: (+1) 9152953666

  • 微信: (+86) 15753355505

Zibo Qiyu の革新的な廃熱回収システムで業界の未来を活性化しましょう。

産業用熱回収アプリケーション:魚介類の乾燥からの余熱の利用

1. Sources and Characteristics of Waste Heat from Seafood and Aquatic Products Drying

Seafood and aquatic products (such as shrimp, fish, shellfish, etc.) are typically dried using hot air drying equipment, with heat sources primarily consisting of coal-fired, gas-fired boilers, or electric heating systems. The drying process generates a large amount of high-temperature, high-humidity exhaust gas (flue gas), with temperatures typically ranging from 50-100°C, containing significant sensible heat and latent heat:

Sensible Heat: The heat inherent in the high-temperature flue gas itself.

Latent heat: The heat released by the condensation of water vapor in the flue gas. Due to the high moisture content of seafood, the proportion of latent heat is particularly significant.

Exhaust gas characteristics: High humidity (containing a large amount of water vapor), may contain salts or organic matter, which can cause equipment corrosion or scale buildup on heat exchanger surfaces.

If these exhaust gases are directly emitted, not only will thermal energy be wasted, but thermal pollution and wet pollution will also increase, affecting the environment.

2. Features of the BXB Plate Heat Exchanger

The BXB plate heat exchanger is a highly efficient, compact heat exchange device widely used in industrial waste heat recovery, particularly suitable for handling high-temperature, high-humidity exhaust gases. Its main features include:

High-efficiency heat exchange: The plate structure provides a large heat exchange area, resulting in high heat transfer efficiency with recovery rates of up to 60-80%.

Compact design: Compared to shell-and-tube heat exchangers, it has a smaller footprint, making it suitable for space-constrained drying equipment.

Corrosion resistance: Stainless steel or titanium alloy plates can be selected to withstand corrosion from salts and organic compounds in seafood drying exhaust gases.

Easy maintenance: The removable design facilitates cleaning to address scaling or deposits in exhaust gases.

Low pressure drop: Minimal fluid resistance reduces system energy consumption.

3. Application of BXB Plate Heat Exchangers in Seafood and Aquatic Product Drying

(1) System Design

Process Flow:

Exhaust Gas Collection: High-temperature, high-humidity exhaust gas (50-100°C) emitted from drying equipment is conveyed through pipes into the hot-side inlet of the BXB plate heat exchanger.

Heat Transfer: The sensible and latent heat in the exhaust gas is transferred through the heat exchanger plates to the cold-side medium (typically cold air or cooling water).

Heat Utilization:

Preheating of Incoming Air: The recovered heat is used to preheat the incoming air to the drying chamber, reducing the energy consumption of the heater.

Hot water production: Heat is transferred to water to produce hot water for equipment cleaning or facility heating.

Dehumidification optimization: After cooling, the exhaust gas's humidity decreases, improving the efficiency of the dehumidification system.

Exhaust gas emission: The cooled exhaust gas (temperature reduced to 40–50°C) is further treated through the dehumidification system before emission, reducing thermal pollution.

Equipment Configuration:

Heat Exchanger Type: BXB plate heat exchangers are selected, with stainless steel 316L or titanium alloy plates recommended to prevent salt corrosion.

Plate Design: Corrugated plates are used to enhance turbulence, improve heat transfer efficiency, and reduce scaling.

Auxiliary Systems: Equipped with exhaust gas filtration devices (to remove dust and organic compounds) and an automatic cleaning system to extend the heat exchanger's lifespan.

(2) Working Principle

Heat from the exhaust gas is transferred to the cold-side medium through the metal plates of the plate heat exchanger. The narrow channels between the plates enhance heat transfer efficiency.

During the heat exchange process, part of the water vapor in the high-temperature, high-humidity exhaust gas condenses, releasing latent heat and further improving heat recovery efficiency.

The cold-side medium (such as air or water) absorbs the heat, increasing its temperature, and can be directly used for drying preheating or other process requirements.

(3) Application Scenarios

Preheating of Incoming Air: Recovering exhaust gas heat to heat fresh incoming air for drying rooms reduces heat source consumption.

Hot Water Supply: Utilizing recovered heat to produce 40-60°C hot water for cleaning seafood processing equipment or providing hot water for industrial use.

Dehumidification Optimization: Reducing exhaust gas humidity through cooling and condensation improves dehumidification efficiency and enhances drying performance.

4. Benefit Analysis

Energy Conservation and Emission Reduction: The BXB plate heat exchanger can recover 50-80% of exhaust gas heat, reducing drying energy consumption by 20-40%, and decreasing fuel consumption and CO2 emissions. For example, recovering 60% of residual heat can significantly reduce energy costs per ton of seafood processing.

Economic Benefits: By reducing fuel and electricity consumption, equipment investment typically recovers costs within 1-2 years.

Environmental Benefits: Lowering exhaust gas temperature and humidity reduces thermal and moisture pollution, meeting environmental protection requirements.

Product Quality: Maintaining stable drying temperatures prevents overheating or excessive humidity, enhancing the quality of seafood drying.

 

Translated with DeepL.com (free version)

パネルルームにおける間接蒸発冷却ユニットの適用

Indirect evaporative cooling (IEC) units are increasingly used in electrical panel rooms, control rooms, and equipment enclosures to provide energy-efficient cooling without introducing additional humidity. These rooms typically house sensitive electrical and electronic equipment that generates heat during operation and requires a controlled temperature environment for reliable functioning.

Application of Cross Flow Heat Exchanger in Indirect Evaporative Cooling System of Data Center

パネルルームにおける間接蒸発冷却ユニットの適用

How It Works

An indirect evaporative cooling unit cools the air without direct contact between water and the air inside the panel room. Instead, it uses a 熱交換器 to transfer heat from the warm air inside the room to a secondary air stream that is cooled by evaporation. This process ensures that:

  • No moisture enters the panel room.

  • The internal air remains clean and dry.

  • Energy consumption is significantly lower than traditional mechanical refrigeration.

Benefits in Panel Room Applications

  1. Moisture-Free Cooling:
    Since no direct contact with water occurs, sensitive electrical components are safe from condensation and corrosion risks.

  2. エネルギー効率:
    Compared to traditional air conditioning systems, IEC units consume less power, making them ideal for continuous operation in industrial settings.

  3. Reduced Maintenance:
    With fewer mechanical components and no refrigeration cycle, the system is simple to maintain and has a longer operational life.

  4. Improved Reliability:
    Maintaining a stable and cool environment helps prolong the life of control panels and reduces the risk of equipment failure caused by overheating.

  5. Environmentally Friendly:
    No refrigerants are used, reducing the system’s environmental impact.

Typical Applications

  • Electrical panel rooms in factories

  • Server and network control cabinets

  • Inverter or PLC (programmable logic controller) rooms

  • Outdoor telecom enclosures

  • Substation control rooms

換気システムにおける熱交換器の応用

Heat exchangers play a key role in ventilation systems by improving air handling efficiency, reducing energy consumption, and enhancing indoor air quality. Below is a detailed explanation of their functions and common applications.


I. Functions of Heat Exchangers in Ventilation Systems

  1. Energy Saving
    Heat exchangers recover thermal energy (or cooling energy) from exhaust air and transfer it to the incoming fresh air. This reduces the energy required to heat or cool fresh air, making it ideal for both winter heating and summer cooling.

  2. Improving Fresh Air Quality and Comfort
    While ensuring sufficient ventilation, heat exchangers help preheat or precool the fresh air, minimizing temperature differences between indoor and outdoor air, and improving occupant comfort.

  3. Boosting System Efficiency (COP)
    By recovering both sensible and latent heat from exhaust air, the system’s energy efficiency is significantly improved.

  4. Assisting Temperature and Humidity Control
    In environments such as cleanrooms, laboratories, or temperature-controlled workshops, heat exchangers serve as pre-conditioning units to stabilize incoming air conditions.


II. Common Types of Heat Exchangers in Ventilation Systems

  1. Plate Heat Exchanger (Sensible Heat)

    • Uses aluminum or plastic plates to separate exhaust and supply air streams while transferring heat across the plates.

    • Commonly used in commercial buildings, schools, and office ventilation.

    • Efficiency typically ranges from 50% to 70%.

  2. Total Heat Recovery Unit (Sensible + Latent Heat)

    • Uses a special membrane that allows both heat and moisture exchange.

    • Ideal for residential buildings, hospitals, hotels, and environments with humidity control needs.

    • Provides better comfort and energy savings.

  3. Heat Pipe Heat Exchanger

    • Features a simple structure with no moving parts; transfers heat via heat pipes while keeping airflow streams completely separate.

    • Suitable for server rooms, preheating/precooling fresh air, and drying systems.

    • Performs well in high-temperature exhaust air environments.

  4. Rotary Wheel Heat Exchanger

    • A rotating wheel with hygroscopic coating simultaneously contacts both fresh and exhaust air, transferring both heat and moisture.

    • High efficiency (up to 70%–85%), but with a potential risk of cross-contamination.

    • Suitable for scenarios where energy efficiency is prioritized and cross-contamination is not critical.

  5. Indirect Evaporative Cooling Heat Exchanger

    • Uses exhaust air evaporation to cool incoming air without adding humidity.

    • Ideal for hot, dry environments such as industrial workshops and warehouses.


III. Typical Application Scenarios

  • Industrial Facilities: Improve temperature and humidity control while lowering fresh air energy consumption.

  • Cleanrooms and Operating Rooms: Stabilize airflow and temperature for controlled environments.

  • Commercial Buildings and Offices: Precondition fresh air and improve HVAC efficiency.

  • Public Spaces (Subways, Airports, Schools): Ensure good ventilation while saving energy.

  • Data Centers and Server Rooms: Recover waste heat for air preheating during winter.

  • Livestock Houses and Greenhouses: Balance ventilation with temperature and humidity stability to support growth.


IV. Conclusion

The application of heat exchangers in ventilation systems has become an essential part of modern HVAC design. By recovering thermal energy, enhancing indoor comfort, and improving air quality, heat exchangers are a core component in green buildings, energy-saving solutions, and intelligent ventilation systems.

炭鉱換気シャフト還気廃熱利用プロジェクトにおける中間壁熱交換器の役割

In the coal mine ventilation shaft exhaust heat utilization project, the intermediate wall-type heat exchanger is a critical piece of equipment for safely transferring heat. Its role is not only about heat exchange efficiency but also about ensuring system safety and operational reliability. The specific functions of the intermediate wall-type heat exchanger are as follows:

To achieve the objectives of shaft freeze protection and winter heating in the auxiliary shaft area, the intermediate wall-type heat exchanger is responsible for safely isolating high-temperature return air from fresh air or clean media while enabling efficient heat exchange. Its primary functions include:

Efficient recovery and utilization of return air waste heat

Utilizing the significant sensible heat carried by return air, the heat is stably transferred to fresh air or hot water systems through the metal intermediate wall, raising the temperature of incoming fresh air into the shaft to above 2°C, meeting freeze protection requirements.

Ensuring cleanliness and safety during heat exchange

Return air contains dust, moisture, and even trace harmful gases, which cannot directly enter the fresh air system. The intermediate wall structure effectively isolates hot and cold media, preventing cross-contamination and ensuring underground air quality and operational safety.

Enhancing the operational reliability of the heating system

The heat exchanger has a robust structure and stable operation, continuing to output heat even under extreme cold conditions. This ensures the continuity and reliability of winter heating in the auxiliary shaft, reducing the operational burden and risks associated with traditional electric heating and boiler systems.

Promoting energy conservation, emissions reduction, and green mine development

Through efficient heat exchange, heating energy consumption and operational costs are significantly reduced, lowering carbon emissions. This provides technical support for coal mines to achieve clean production and green transformation.

 

Translated with DeepL.com (free version)

効率的で環境に優しく、信頼性が高い - QIYU 空冷式チラーは、最高の産業用冷却ソリューションです。

室内空気質研究のリーダーである淄博市齊裕空調エネルギー設備有限公司は、効率的で環境に優しいHVACソリューションの提供に尽力しています。当社の空冷式チラーシリーズは、高度な技術と安定した性能を備え、プラスチック、エレクトロニクス、電気めっき、食品加工、医薬品、インク印刷、真空成形、射出成形、レーザー加工、金属鋳造、ブロー成形、精密機械、ガラス工芸、宝飾品加工、皮革、水産養殖、製紙、牛乳冷凍、化学製造などの業界で幅広く利用されており、省エネと生産効率の向上に貢献しています。

主な利点:

  • 省エネで環境に優しい: 環境に優しい冷媒R410Aを使用し、冷却塔が不要なため、水資源と設置スペースを節約できます。乾燥地域(例:中国北部)に最適です。効率的な時間単位の冷却を実現し、二酸化炭素排出量を最小限に抑え、環境に優しく健康的な職場環境を実現します。
  • 高効率で安定した動作:パナソニック、サンヨーなどの一流コンプレッサー、定評のあるポンプ、軸流ファンを搭載し、低騒音、高圧、迅速な放熱を実現します。台湾製コントローラーによる全自動リモートコントロールシステムにより、0.1℃単位の温度精度と5~30℃の調整範囲を実現し、24時間365日連続運転をサポートします。
  • スマートな安全保護欠相・逆相、高圧・低圧、過負荷、水位、凍結防止など、複数の電気安全装置を内蔵しています。工場で試運転済みなので、電源と給水管を接続するだけですぐに使用できます。
  • 柔軟なカスタマイズオプション機能には、ステンレス製ポンプ、ハウジング、複数の冷水入口/出口、銅製蒸発器(より高い熱交換効率)、負圧吸引システム、またはさまざまな環境に適応するためのリモート コントロールなどがあります。

包括的な仕様、優れたパフォーマンス冷却能力は2.4Kwから73.5Kwまで、複数のモデル(例:LSJシリーズ)を取り揃えています。凝縮器は銅管と親水性アルミフィンを採用し、蒸発器はステンレス鋼コイルまたはシェルアンドチューブ構造を採用しています。また、304ステンレス鋼タンクは自動給水機能を備え、長期耐久性を実現します。

効率性、信頼性、そして環境に優しい産業パートナーとして、QIYU空冷チラーをお選びください。省エネ冷却の旅を始めるには、今すぐお問い合わせください。

ガス-ガスプレート熱交換器とは何ですか?

ガス-ガスプレート熱交換器とは何ですか?

Gas-Gas Plate Heat Exchanger

Gas-Gas Plate Heat Exchanger

A gas-gas plate heat exchanger is a highly efficient heat transfer device designed to recover heat from high-temperature exhaust gases and transfer it to incoming cold air or other gas streams. Unlike traditional heat exchangers, its compact plate structure maximizes the heat transfer surface area, achieving thermal efficiencies of 60% to 80%. The exchanger consists of thin, corrugated metal plates (typically stainless steel) that create separate channels for hot and cold gases, allowing heat to pass through the plates without mixing the gas streams.

This technology is particularly suited for industrial processes that generate significant waste heat, such as drying systems in ultrasonic cleaning machines used for hardware components. By capturing and reusing this heat, the gas-gas plate heat exchanger reduces the energy required for heating processes, lowering operational costs and carbon emissions.

ヘルプが必要ですか?
ja日本語