श्रेणी पुरालेख उत्पादों

प्रतिधारा प्रवाह, समान्तर प्रवाह की तुलना में अधिक कुशल क्यों है?

ऊष्मा एक्सचेंजरों में प्रतिधारा प्रवाह (काउंटरफ्लो) समानांतर प्रवाह की तुलना में अधिक कुशल होता है क्योंकि यह एक्सचेंजर में दो तरल पदार्थों के बीच एक बड़ा और अधिक सुसंगत तापमान अंतर (ΔT) बनाए रखता है, जिससे ऊष्मा स्थानांतरण अधिकतम होता है। यहाँ एक विस्तृत व्याख्या दी गई है:

1. तापमान प्रवणता और ऊष्मा स्थानांतरण

  • प्रतिप्रवाह:
    • प्रतिप्रवाह में, तरल पदार्थ विपरीत दिशाओं में प्रवाहित होते हैं (उदाहरण के लिए, एक छोर से गर्म तरल पदार्थ प्रवेश करता है, और दूसरे छोर से ठंडा तरल पदार्थ)। इससे एक्सचेंजर की पूरी लंबाई में लगभग स्थिर तापमान अंतर (ΔT) उत्पन्न होता है।
    • गर्म तरल का उच्चतम तापमान (प्रवेश द्वार) ठंडे तरल के निकास द्वार से मिलता है, और ठंडे तरल का निम्नतम तापमान (प्रवेश द्वार) गर्म तरल के निकास द्वार से मिलता है। इससे ठंडे तरल को गर्म तरल के प्रवेश द्वार के तापमान के करीब पहुँचने में मदद मिलती है, जिससे ऊष्मा स्थानांतरण अधिकतम हो जाता है।
    • उदाहरण: यदि गर्म तरल पदार्थ 100°C पर प्रवेश करता है और 40°C पर बाहर निकलता है, और ठंडा तरल पदार्थ 20°C पर प्रवेश करता है, तो यह 90°C के करीब बाहर निकल सकता है, जिससे उच्च ताप स्थानांतरण दर प्राप्त होती है।
  • समानांतर प्रवाह:
    • समानांतर प्रवाह में, दोनों तरल पदार्थ एक ही दिशा में बहते हैं, इसलिए सबसे बड़ा ΔT इनलेट पर होता है, लेकिन जैसे ही दोनों तरल पदार्थ एक्सचेंजर के साथ समान तापमान पर पहुंचते हैं, यह तेजी से घटता है।
    • ठंडे तरल पदार्थ का निकास तापमान गर्म तरल पदार्थ के निकास तापमान से अधिक नहीं हो सकता, जिससे कुल स्थानांतरित ऊष्मा सीमित हो जाती है।
    • उदाहरण: यदि गर्म तरल पदार्थ 100°C पर प्रवेश करता है और 60°C पर बाहर निकलता है, तो 20°C पर प्रवेश करने वाला ठंडा तरल पदार्थ केवल ~50°C तक ही पहुंच सकता है, जिसके परिणामस्वरूप कम ऊष्मा स्थानांतरण होता है।

यह क्यों मायने रखती हैऊष्मा स्थानांतरण दर (Q) ΔT के समानुपाती होती है (Q = U × A × ΔT, जहाँ U ऊष्मा स्थानांतरण गुणांक है और A पृष्ठीय क्षेत्रफल है)। प्रतिप्रवाह का बड़ा और अधिक सुसंगत ΔT, औसत ऊष्मा स्थानांतरण दर को ऊँचा करता है, जिससे यह अधिक कुशल हो जाता है।

2. लॉग माध्य तापमान अंतर (LMTD)

  • हीट एक्सचेंजर की दक्षता को अक्सर लॉग मीन तापमान अंतर (LMTD) का उपयोग करके मापा जाता है, जो ताप हस्तांतरण को संचालित करने वाले औसत तापमान अंतर का प्रतिनिधित्व करता है।
  • प्रतिप्रवाह: इसका LMTD अधिक होता है क्योंकि एक्सचेंजर के साथ तापमान का अंतर अपेक्षाकृत स्थिर रहता है। इससे समान सतह क्षेत्र के लिए अधिक ऊष्मा का स्थानांतरण संभव होता है।
  • समानांतर प्रवाह: इसका LMTD कम होता है, क्योंकि आउटलेट की ओर तापमान का अंतर काफी कम हो जाता है, जिससे ऊष्मा स्थानांतरण के लिए चालक बल कम हो जाता है।
  • परिणामसमान ताप एक्सचेंजर आकार के लिए, काउंटरफ्लो अपने उच्च LMTD के कारण अधिक ताप स्थानांतरित करता है, या समान ताप स्थानांतरण प्राप्त करने के लिए इसे छोटे सतह क्षेत्र की आवश्यकता होती है, जिससे यह अधिक कॉम्पैक्ट और कुशल हो जाता है।

3. अधिकतम ऊष्मा पुनर्प्राप्ति

  • प्रतिप्रवाह में, ठंडा तरल पदार्थ सैद्धांतिक रूप से गर्म तरल पदार्थ के इनलेट तापमान तक पहुंच सकता है (एक असीम रूप से लंबे एक्सचेंजर में), जिससे लगभग पूर्ण ताप पुनर्प्राप्ति संभव हो जाती है (उदाहरण के लिए, होलटॉप के 3D क्रॉस-काउंटरफ्लो एक्सचेंजर्स जैसे आधुनिक डिजाइनों में 90-95% दक्षता)।
  • समानांतर प्रवाह में, ठंडे तरल पदार्थ का निकास तापमान गर्म तरल पदार्थ के निकास तापमान द्वारा सीमित होता है, जिससे दक्षता (आमतौर पर 60–80%) सीमित हो जाती है। यह प्रतिप्रवाह को ऊर्जा पुनर्प्राप्ति वेंटिलेशन या औद्योगिक प्रक्रियाओं जैसे अनुप्रयोगों के लिए आदर्श बनाता है जहाँ अधिकतम ऊष्मा पुनर्प्राप्ति महत्वपूर्ण होती है।

4. व्यावहारिक निहितार्थ

  • प्रतिप्रवाह: सुसंगत ΔT आवश्यक ऊष्मा स्थानांतरण क्षेत्र को कम करता है, जिससे उच्च-प्रदर्शन अनुप्रयोगों के लिए छोटे, अधिक लागत-प्रभावी डिज़ाइन प्राप्त होते हैं। इसका व्यापक रूप से HVAC, औद्योगिक शीतलन और ऊर्जा पुनर्प्राप्ति प्रणालियों में उपयोग किया जाता है।
  • समानांतर प्रवाहΔT में तेज़ी से कमी के कारण, तुलनीय ऊष्मा स्थानांतरण प्राप्त करने के लिए एक बड़े ऊष्मा स्थानांतरण क्षेत्र की आवश्यकता होती है, जिससे सामग्री और स्थान की आवश्यकता बढ़ जाती है। इसका उपयोग बुनियादी रेडिएटर या शैक्षिक प्रतिष्ठानों जैसे सरल, कम दक्षता-महत्वपूर्ण अनुप्रयोगों में किया जाता है।

दृश्य स्पष्टीकरण (सरलीकृत)

  • प्रतिप्रवाहएक गर्म तरल (100°C से 40°C) और एक ठंडे तरल (20°C से 90°C) की कल्पना करें। एक्सचेंजर में तापमान का अंतर अपेक्षाकृत अधिक (जैसे, लगभग 20-60°C) रहता है, जिससे कुशल ऊष्मा स्थानांतरण होता है।
  • समानांतर प्रवाह: वही तरल पदार्थ बड़े ΔT (100°C – 20°C = 80°C) से शुरू होते हैं, लेकिन जल्दी ही अभिसरित हो जाते हैं (उदाहरण के लिए, 60°C – 50°C = 10°C), जिससे चालक बल कम हो जाता है और दक्षता सीमित हो जाती है।

निष्कर्ष

प्रतिधारा प्रवाह अधिक कुशल होता है क्योंकि यह एक्सचेंजर के साथ-साथ एक बड़े और अधिक सुसंगत तापमान अंतर (ΔT) को बनाए रखता है, जिसके परिणामस्वरूप समान सतह क्षेत्र के लिए उच्च LMTD और अधिक ऊष्मा स्थानांतरण होता है। यह इसे ऊर्जा पुनर्प्राप्ति या औद्योगिक प्रक्रियाओं जैसे उच्च दक्षता की आवश्यकता वाले अनुप्रयोगों के लिए पसंदीदा विकल्प बनाता है, जबकि समानांतर प्रवाह सरल लेकिन कम प्रभावी होता है, जो कम मांग वाले अनुप्रयोगों के लिए उपयुक्त है।

प्रतिप्रवाह ताप विनिमायक बनाम समानांतर प्रवाह

प्रतिप्रवाह और समानांतर प्रवाह ऊष्मा विनिमायक दो तरल पदार्थों के बीच ऊष्मा स्थानांतरण के लिए दो प्राथमिक विन्यास हैं, जो तरल प्रवाह की दिशा और दक्षता, तापमान प्रोफ़ाइल और अनुप्रयोगों पर उनके प्रभाव में भिन्न होते हैं। नीचे उनके डिज़ाइन, प्रदर्शन और उपयोग के मामलों के आधार पर एक संक्षिप्त तुलना दी गई है।

1. प्रवाह विन्यास

  • काउंटरफ्लो हीट एक्सचेंजर:
    • तरल पदार्थ विपरीत दिशाओं में बहते हैं (उदाहरण के लिए, गर्म तरल पदार्थ एक छोर से प्रवेश करता है, तथा ठंडा तरल पदार्थ विपरीत छोर से)।
    • उदाहरण: गर्म तरल पदार्थ बायीं ओर से दायीं ओर बहता है, ठंडा तरल पदार्थ दायीं ओर से बायीं ओर बहता है।
  • समानांतर प्रवाह हीट एक्सचेंजर:
    • तरल पदार्थ एक ही दिशा में बहते हैं (उदाहरण के लिए, गर्म और ठंडे दोनों तरल पदार्थ एक ही छोर से प्रवेश करते हैं और विपरीत छोर से बाहर निकलते हैं)।
    • उदाहरण: दोनों तरल पदार्थ बाएं से दाएं बहते हैं।

2. ऊष्मा स्थानांतरण दक्षता

  • प्रतिप्रवाह:
    • उच्च दक्षता: एक्सचेंजर की पूरी लंबाई के साथ एक बड़ा तापमान अंतर (ΔT) बनाए रखता है, जिससे प्रति इकाई क्षेत्र में ऊष्मा हस्तांतरण अधिकतम हो जाता है।
    • अच्छी तरह से डिज़ाइन की गई प्रणालियों (जैसे, प्लेट या ट्यूब एक्सचेंजर्स) में 90-95% तक थर्मल दक्षता प्राप्त की जा सकती है।
    • ठंडे तरल पदार्थ का आउटलेट तापमान, गर्म तरल पदार्थ के इनलेट तापमान के करीब पहुंच सकता है, जिससे यह अधिकतम ताप प्राप्ति की आवश्यकता वाले अनुप्रयोगों के लिए आदर्श बन जाता है।
  • समानांतर प्रवाह:
    • कम दक्षतातापमान अंतर (ΔT) इनलेट पर सबसे अधिक होता है, लेकिन जैसे ही दोनों तरल पदार्थ एक्सचेंजर के साथ थर्मल संतुलन की ओर बढ़ते हैं, यह तेजी से घटता है।
    • आमतौर पर 60-80% दक्षता प्राप्त होती है, क्योंकि ठंडे तरल पदार्थ का आउटलेट तापमान गर्म तरल पदार्थ के आउटलेट तापमान से अधिक नहीं हो सकता है।
    • लगभग पूर्ण ताप हस्तांतरण की आवश्यकता वाले अनुप्रयोगों के लिए कम प्रभावी।

3. तापमान प्रोफ़ाइल

  • प्रतिप्रवाह:
    • तापमान प्रवणता अधिक एकसमान होती है, एक्सचेंजर में लगभग स्थिर ΔT होता है।
    • यह तापमान को अधिक निकट लाने की अनुमति देता है (गर्म तरल पदार्थ के आउटलेट और ठंडे तरल पदार्थ के इनलेट तापमान के बीच का अंतर)।
    • उदाहरण: गर्म तरल पदार्थ 100°C पर प्रवेश करता है और 40°C पर बाहर निकलता है; ठंडा तरल पदार्थ 20°C पर प्रवेश करता है और 90°C के करीब बाहर निकल सकता है।
  • समानांतर प्रवाह:
    • इनलेट पर तापमान का अंतर बड़ा होता है, लेकिन एक्सचेंजर के साथ-साथ यह कम होता जाता है, जिससे तरल पदार्थ के समान तापमान पर पहुंचने पर ऊष्मा स्थानांतरण सीमित हो जाता है।
    • उदाहरण: गर्म तरल पदार्थ 100°C पर प्रवेश करता है और 60°C पर बाहर निकलता है; ठंडा तरल पदार्थ 20°C पर प्रवेश करता है और केवल 50°C तक ही पहुंच पाता है।

4. डिज़ाइन और जटिलता

  • प्रतिप्रवाह:
    • तरल पदार्थ का विपरीत दिशाओं में प्रवाह सुनिश्चित करने के लिए प्रायः अधिक जटिल पाइपिंग या प्लेट व्यवस्था की आवश्यकता होती है, जिससे विनिर्माण लागत में वृद्धि हो सकती है।
    • उच्च दक्षता के कारण कॉम्पैक्ट डिजाइन संभव है, जिससे समान ताप स्थानांतरण दर के लिए सामग्री की आवश्यकता कम हो जाती है।
  • समानांतर प्रवाह:
    • सरल डिजाइन, क्योंकि दोनों तरल पदार्थ एक ही छोर से प्रवेश करते हैं और बाहर निकलते हैं, जिससे पाइपिंग की जटिलता कम हो जाती है।
    • तुलनीय ऊष्मा हस्तांतरण प्राप्त करने के लिए बड़े ऊष्मा हस्तांतरण क्षेत्र (लंबा या बड़ा एक्सचेंजर) की आवश्यकता हो सकती है, जिससे आकार और सामग्री की लागत बढ़ जाती है।

5. अनुप्रयोग

  • प्रतिप्रवाह:
    • उच्च दक्षता और अधिकतम ताप पुनर्प्राप्ति की आवश्यकता वाले अनुप्रयोगों में पसंदीदा, जैसे:
      • एचवीएसी प्रणालियाँ (जैसे, ऊर्जा पुनर्प्राप्ति वेंटिलेटर)।
      • औद्योगिक प्रक्रियाएँ (जैसे, रासायनिक संयंत्र, विद्युत उत्पादन)।
      • अपशिष्ट जल ऊष्मा पुनर्प्राप्ति (उदाहरणार्थ, शावर हीट एक्सचेंजर्स)।
      • क्रायोजेनिक प्रणालियाँ जहाँ सटीक तापमान नियंत्रण महत्वपूर्ण है।
    • प्लेट हीट एक्सचेंजर्स, डबल-पाइप एक्सचेंजर्स और उच्च-प्रदर्शन शेल-एंड-ट्यूब डिज़ाइनों में आम।
  • समानांतर प्रवाह:
    • ऐसे अनुप्रयोगों में उपयोग किया जाता है जहां सरलता को प्राथमिकता दी जाती है, या जहां पूर्ण ऊष्मा हस्तांतरण महत्वपूर्ण नहीं होता है, जैसे:
      • छोटे पैमाने की शीतलन प्रणालियाँ (जैसे, कार रेडिएटर)।
      • ऐसी प्रक्रियाएं जहां तरल पदार्थ निश्चित तापमान से अधिक नहीं होना चाहिए (उदाहरण के लिए, ठंडे तरल पदार्थ को अधिक गर्म होने से बचाना)।
      • सरल निर्माण के कारण शैक्षिक या प्रयोगात्मक सेटअप।
    • बुनियादी ट्यूब-इन-ट्यूब या शेल-एंड-ट्यूब हीट एक्सचेंजर्स में आम।

6. फायदे और नुकसान

  • प्रतिप्रवाह:
    • लाभ:
      • उच्च तापीय दक्षता, ऊर्जा हानि में कमी।
      • समान ऊष्मा स्थानांतरण क्षमता के लिए छोटा आकार।
      • बड़े तापमान अंतर वाले अनुप्रयोगों के लिए बेहतर अनुकूल।
    • नुकसान:
      • अधिक जटिल डिजाइन और पाइपिंग से लागत में संभावित वृद्धि होगी।
      • ठंडे वातावरण में संघनन या पाले को प्रबंधित करने के लिए अतिरिक्त उपायों की आवश्यकता हो सकती है।
  • समानांतर प्रवाह:
    • लाभ:
      • सरल डिजाइन, निर्माण और रखरखाव आसान।
      • कुछ मामलों में दबाव में कमी, जिससे पम्पिंग लागत में कमी आती है।
    • नुकसान:
      • कम दक्षता, बड़े ताप हस्तांतरण क्षेत्र की आवश्यकता।
      • आउटलेट तापमान बाधा द्वारा सीमित (ठंडा तरल पदार्थ गर्म तरल पदार्थ के आउटलेट तापमान से अधिक नहीं हो सकता)।

7. व्यावहारिक विचार

  • प्रतिप्रवाह:
    • ऊर्जा पुनर्प्राप्ति प्रणालियों के लिए आदर्श (उदाहरण के लिए, होलटॉप के 95% दक्षता वाले 3D क्रॉस-काउंटरफ्लो एक्सचेंजर्स या RECUTECH के RFK+ एन्थैल्पी एक्सचेंजर्स)।
    • संघनन को प्रबंधित करने के लिए अक्सर हाइड्रोफिलिक कोटिंग्स जैसी सुविधाओं से सुसज्जित (उदाहरण के लिए, एरी कॉर्पोरेशन के एल्यूमीनियम प्लेट एक्सचेंजर्स)।
  • समानांतर प्रवाह:
    • इसका उपयोग उन अनुप्रयोगों में किया जाता है जहां लागत और सरलता, दक्षता की आवश्यकताओं से अधिक महत्वपूर्ण होती है, जैसे कि बुनियादी HVAC प्रणालियां या लघु-स्तरीय औद्योगिक शीतलन।
    • प्रदर्शन सीमाओं के कारण आधुनिक उच्च दक्षता वाले डिजाइनों में कम आम है।

सार तालिका

पैनल कक्षों में अप्रत्यक्ष वाष्पीकरण शीतलन इकाइयों का अनुप्रयोग

अप्रत्यक्ष वाष्पीकरण शीतलन (आईईसी) इकाइयों का उपयोग तेजी से बढ़ रहा है विद्युत पैनल कक्ष, नियंत्रण कक्ष, और उपकरण बाड़ों अतिरिक्त आर्द्रता उत्पन्न किए बिना ऊर्जा-कुशल शीतलन प्रदान करने के लिए। इन कमरों में आमतौर पर संवेदनशील विद्युत और इलेक्ट्रॉनिक उपकरण होते हैं जो संचालन के दौरान गर्मी उत्पन्न करते हैं और विश्वसनीय संचालन के लिए नियंत्रित तापमान वाले वातावरण की आवश्यकता होती है।

Application of Cross Flow Heat Exchanger in Indirect Evaporative Cooling System of Data Center

पैनल कक्षों में अप्रत्यक्ष वाष्पीकरण शीतलन इकाइयों का अनुप्रयोग

यह काम किस प्रकार करता है

एक अप्रत्यक्ष वाष्पीकरण शीतलन इकाई, पैनल रूम के अंदर पानी और हवा के बीच सीधे संपर्क के बिना हवा को ठंडा करती है। इसके बजाय, यह एक उष्मा का आदान प्रदान करने वाला कमरे के अंदर की गर्म हवा से ऊष्मा को एक द्वितीयक वायु धारा में स्थानांतरित करना जो वाष्पीकरण द्वारा ठंडी होती है। यह प्रक्रिया सुनिश्चित करती है कि:

  • नमी नहीं पैनल कक्ष में प्रवेश करता है।

  • The आंतरिक वायु स्वच्छ और शुष्क रहती है.

  • ऊर्जा की खपत काफी कम है पारंपरिक यांत्रिक प्रशीतन की तुलना में.

पैनल रूम अनुप्रयोगों में लाभ

  1. नमी-मुक्त शीतलन:
    चूंकि पानी के साथ कोई सीधा संपर्क नहीं होता, इसलिए संवेदनशील विद्युत घटक संघनन और संक्षारण के जोखिम से सुरक्षित रहते हैं।

  2. ऊर्जा दक्षता:
    पारंपरिक एयर कंडीशनिंग प्रणालियों की तुलना में, आईईसी इकाइयां कम बिजली की खपत करती हैं, जिससे वे औद्योगिक परिस्थितियों में निरंतर संचालन के लिए आदर्श बन जाती हैं।

  3. कम रखरखाव:
    कम यांत्रिक घटकों और बिना किसी प्रशीतन चक्र के, इस प्रणाली का रखरखाव सरल है और इसका परिचालन जीवन भी लम्बा है।

  4. बेहतर विश्वसनीयता:
    स्थिर और ठंडा वातावरण बनाए रखने से नियंत्रण पैनलों का जीवनकाल बढ़ाने में मदद मिलती है और अधिक गर्मी के कारण उपकरण खराब होने का जोखिम कम हो जाता है।

  5. पर्यावरण के अनुकूल:
    इसमें किसी भी प्रकार के रेफ्रिजरेंट का उपयोग नहीं किया जाता, जिससे सिस्टम का पर्यावरणीय प्रभाव कम हो जाता है।

विशिष्ट अनुप्रयोग

  • कारखानों में विद्युत पैनल कक्ष

  • सर्वर और नेटवर्क नियंत्रण कैबिनेट

  • इन्वर्टर या पीएलसी (प्रोग्रामेबल लॉजिक कंट्रोलर) कमरे

  • आउटडोर दूरसंचार बाड़ों

  • सबस्टेशन नियंत्रण कक्ष

औद्योगिक ताप वसूली बॉक्स, अपशिष्ट गैस और ताप वसूली, गैस से गैस ताप एक्सचेंजर

औद्योगिक ऊष्मा पुनर्प्राप्ति बॉक्स एक सघन और कुशल प्रणाली है जिसे विभिन्न औद्योगिक अनुप्रयोगों में अपशिष्ट गैस धाराओं से ऊष्मा पुनर्प्राप्ति के लिए डिज़ाइन किया गया है। यह गैस-से-गैस ऊष्मा एक्सचेंजर का उपयोग करके गर्म निकास गैसों से ऊष्मा ऊर्जा को आने वाली ताज़ी हवा में स्थानांतरित करता है, बिना दोनों वायु धाराओं को मिलाए। यह प्रक्रिया अतिरिक्त तापन की आवश्यकता को कम करके ऊर्जा दक्षता में उल्लेखनीय सुधार करती है, जिससे परिचालन लागत कम होती है और पर्यावरणीय प्रभाव कम होता है।

एल्युमीनियम या स्टेनलेस स्टील जैसी टिकाऊ सामग्रियों से निर्मित, यह प्रणाली उच्च तापमान और संक्षारक वातावरण को सहन करने में सक्षम है। आंतरिक ताप विनिमायक, जो अक्सर एल्युमीनियम फ़ॉइल या प्लेटों से बना होता है, उच्च तापीय चालकता और कुशल ऊष्मा स्थानांतरण सुनिश्चित करता है। यह डिज़ाइन गंदी निकास हवा और स्वच्छ आपूर्ति हवा के बीच परस्पर संदूषण को रोकता है, जिससे यह खाद्य प्रसंस्करण, तंबाकू, मुद्रण, रसायन और कीचड़ उपचार जैसे उद्योगों के लिए उपयुक्त है।

यह ऊर्जा-बचत समाधान न केवल अपशिष्ट ऊष्मा को पुनः प्राप्त करता है, बल्कि आंतरिक वायु गुणवत्ता में सुधार और स्थिर उत्पादन वातावरण बनाए रखने में भी मदद करता है। स्थापित करने और रखरखाव में आसान, औद्योगिक ऊष्मा पुनर्प्राप्ति बॉक्स उन कारखानों के लिए एक स्मार्ट विकल्प है जो स्थिरता को बढ़ाना और ऊर्जा-बचत नियमों का पालन करना चाहते हैं।

Industrial heat recovery box, waste gas and heat recovery, gas to gas heat exchanger

औद्योगिक ताप वसूली बॉक्स, अपशिष्ट गैस और ताप वसूली, गैस से गैस ताप एक्सचेंजर

क्रॉस फ्लो हीट एक्सचेंजर कैसे काम करता है?

क्रॉसफ्लो हीट एक्सचेंजर यह दो तरल पदार्थों को एक-दूसरे के समकोण (लंबवत) पर प्रवाहित करके काम करता है, आमतौर पर एक तरल पदार्थ नलियों से होकर बहता है और दूसरा नलियों के बाहर की ओर बहता है। इसका मुख्य सिद्धांत यह है कि ऊष्मा नलियों की दीवारों के माध्यम से एक तरल पदार्थ से दूसरे तरल पदार्थ में स्थानांतरित होती है। यह कैसे काम करता है, इसका चरण-दर-चरण विवरण इस प्रकार है:

अवयव:

  1. ट्यूब साइड: तरल पदार्थों में से एक ट्यूब के माध्यम से बहता है।
  2. शेल साइड: दूसरा तरल पदार्थ नलिकाओं के ऊपर, नलिका बंडल के आर-पार, नलिकाओं के अन्दर तरल पदार्थ के प्रवाह के लंबवत दिशा में बहता है।

कार्य प्रक्रिया:

  1. द्रव प्रवेशदोनों तरल पदार्थ (गर्म और ठंडे) अलग-अलग प्रवेश द्वारों से ऊष्मा विनिमायक में प्रवेश करते हैं। एक तरल पदार्थ (मान लीजिए गर्म तरल पदार्थ) नलियों के माध्यम से प्रवेश करता है, और दूसरा तरल पदार्थ (ठंडा तरल पदार्थ) नलियों के बाहर के स्थान में प्रवेश करता है।
  2. द्रव प्रवाह:

    • नलिकाओं के अंदर बहने वाला तरल पदार्थ सीधे या थोड़े मुड़े हुए रास्ते में बहता है।
    • नलिकाओं के बाहर बहने वाला द्रव उनके ऊपर से लंबवत दिशा में बहता है। इस द्रव का मार्ग या तो क्रॉसफ़्लो (नलिकाओं के सीधे आर-पार) हो सकता है या अधिक जटिल विन्यास वाला हो सकता है, जैसे क्रॉसफ़्लो और काउंटरफ़्लो का संयोजन।

  3. गर्मी का हस्तांतरण:

    • गर्म तरल पदार्थ से ऊष्मा ट्यूब की दीवारों में स्थानांतरित होती है और फिर ट्यूबों में प्रवाहित होने वाले ठंडे तरल पदार्थ में स्थानांतरित होती है।
    • ऊष्मा स्थानांतरण की दक्षता दो तरल पदार्थों के बीच तापमान के अंतर पर निर्भर करती है। तापमान का अंतर जितना अधिक होगा, ऊष्मा स्थानांतरण उतना ही अधिक कुशल होगा।

  4. दुकानऊष्मा स्थानांतरण के बाद, अब ठंडा गर्म तरल एक आउटलेट से बाहर निकलता है, और अब गर्म ठंडा तरल दूसरे आउटलेट से बाहर निकलता है। ऊष्मा विनिमय प्रक्रिया के परिणामस्वरूप, ऊष्मा एक्सचेंजर से प्रवाहित होने पर दोनों तरल पदार्थों के तापमान में परिवर्तन होता है।

डिज़ाइन विविधताएँ:

  • एकल-पास क्रॉसफ़्लोएक तरल पदार्थ नलिकाओं में एक ही दिशा में बहता है, और दूसरा तरल पदार्थ नलिकाओं के माध्यम से चलता है।
  • मल्टी-पास क्रॉसफ़्लोट्यूब के अंदर का तरल पदार्थ कई बार प्रवाहित हो सकता है, जिससे बाहरी तरल पदार्थ के साथ संपर्क समय बढ़ जाता है, जिससे ऊष्मा हस्तांतरण में सुधार होता है।

दक्षता पर विचार:

  • क्रॉसफ़्लो हीट एक्सचेंजर्स आमतौर पर काउंटरफ़्लो हीट एक्सचेंजर्स की तुलना में कम कुशल होते हैं क्योंकि दोनों तरल पदार्थों के बीच तापमान प्रवणता हीट एक्सचेंजर की लंबाई के साथ घटती जाती है। काउंटरफ़्लो में, तरल पदार्थ अधिक स्थिर तापमान अंतर बनाए रखते हैं, जिससे यह ऊष्मा स्थानांतरण के लिए अधिक प्रभावी हो जाता है।
  • हालांकि, क्रॉसफ्लो हीट एक्सचेंजर्स को डिजाइन करना आसान होता है और अक्सर उन स्थितियों में उपयोग किया जाता है जहां स्थान सीमित होता है या जहां तरल पदार्थों को अलग करने की आवश्यकता होती है (जैसे एयर-टू-एयर हीट एक्सचेंजर्स में)।

अनुप्रयोग:

  • वायु-शीतित ताप एक्सचेंजर्स (जैसे एचवीएसी सिस्टम या कार रेडिएटर में)।
  • इलेक्ट्रॉनिक उपकरणों का शीतलन.
  • वेंटिलेशन सिस्टम के लिए हीट एक्सचेंजर्स.

इसलिए, हालांकि ये काउंटरफ्लो हीट एक्सचेंजर्स की तरह तापीय रूप से कुशल नहीं हैं, क्रॉसफ्लो डिजाइन बहुमुखी हैं और आमतौर पर तब उपयोग किए जाते हैं जब सादगी या स्थान की बचत महत्वपूर्ण होती है।

क्रॉस फ्लो हीट एक्सचेंजर के लिए तापमान प्रोफ़ाइल

यहाँ इसका विवरण दिया गया है तापमान प्रोफ़ाइल एक के लिए क्रॉस फ्लो हीट एक्सचेंजर, विशेष रूप से जब दोनों तरल पदार्थ अमिश्रित हैं:


🔥 क्रॉस फ्लो हीट एक्सचेंजर - दोनों तरल पदार्थ अमिश्रित

➤ प्रवाह व्यवस्था:

  • एक तरल पदार्थ क्षैतिज रूप से बहता है (मान लीजिए, नलियों में गर्म तरल पदार्थ)।
  • दूसरा ऊर्ध्वाधर रूप से प्रवाहित होता है (मान लीजिए, नलियों के आर-पार ठंडी हवा प्रवाहित होती है)।
  • तरल पदार्थों के भीतर या बीच में कोई मिश्रण नहीं होना चाहिए।


📈 तापमान प्रोफ़ाइल विवरण:

▪ गर्म तरल पदार्थ:

  • इनलेट तापमान: उच्च।
  • जैसे-जैसे यह बहता है, गर्मी खो देता है ठंडे तरल पदार्थ के लिए.
  • आउटलेट तापमान: इनलेट से कम, लेकिन अलग-अलग संपर्क समय के कारण एक्सचेंजर में एक समान नहीं।

▪ ठंडा तरल पदार्थ:

  • इनलेट तापमान: कम।
  • गर्म नलियों के पार प्रवाहित होने पर यह गर्मी प्राप्त करता है।
  • आउटलेट तापमान: उच्चतर, लेकिन एक्सचेंजर में भी भिन्न होता है।

🌀 क्रॉसफ़्लो और मिश्रण न होने के कारण:

  • एक्सचेंजर पर प्रत्येक बिंदु एक देखता है विभिन्न तापमान प्रवणतायह इस बात पर निर्भर करता है कि प्रत्येक तरल पदार्थ सतह के संपर्क में कितनी देर तक रहा है।
  • तापमान वितरण है अरेखीय और काउंटरफ्लो या समानांतर प्रवाह एक्सचेंजर्स की तुलना में अधिक जटिल है।


📊 विशिष्ट तापमान प्रोफ़ाइल (योजनाबद्ध लेआउट):

                ↑ ठंडा तरल पदार्थ

उच्च │ ┌──────────────┐
तापमान │ │ │
│ │ │ → गर्म तरल पदार्थ (दाहिनी ओर)
│ │ │
↓ └──────────────┘
ठंडा तरल पदार्थ बाहर ← गर्म तरल पदार्थ बाहर

⬇ तापमान वक्र:

  • ठंडा तरल पदार्थ धीरे-धीरे गर्म होता है - वक्र नीचे से शुरू होता है और ऊपर की ओर बढ़ता है।
  • गर्म तरल पदार्थ ठंडा हो जाता है - उच्च से शुरू होकर नीचे की ओर बढ़ता है।
  • वक्र हैं समानांतर नहीं, और सममित नहीं क्रॉसफ्लो ज्यामिति और बदलती गर्मी विनिमय दर के कारण।


🔍 दक्षता:

  • प्रभावशीलता इस पर निर्भर करती है ताप क्षमता अनुपात और यह एनटीयू (स्थानांतरण इकाइयों की संख्या).
  • आम तौर पर कम कुशल प्रतिप्रवाह की तुलना में लेकिन अधिक कुशल समानांतर प्रवाह की तुलना में.

दोनों तरल पदार्थों के बिना मिश्रित क्रॉस फ्लो हीट एक्सचेंजर

दोनों तरल पदार्थों के बिना मिश्रित क्रॉस फ्लो हीट एक्सचेंजर एक प्रकार के ताप एक्सचेंजर को संदर्भित करता है जहां दो तरल पदार्थ (गर्म और ठंडे) एक दूसरे के लंबवत (90 डिग्री पर) प्रवाहित होते हैं, और न तो कोई तरल पदार्थ आंतरिक रूप से या दूसरे के साथ मिश्रित होता हैयह कॉन्फ़िगरेशन जैसे अनुप्रयोगों में आम है हवा से हवा में ऊष्मा पुनर्प्राप्ति या ऑटोमोटिव रेडिएटर.

प्रमुख विशेषताऐं:

  • क्रॉस प्रवाहदोनों तरल पदार्थ एक दूसरे से समकोण पर गति करते हैं।
  • अमिश्रित तरल पदार्थगर्म और ठंडे दोनों तरल पदार्थ ठोस दीवारों या पंखों द्वारा अपने-अपने प्रवाह मार्गों तक सीमित रहते हैं, जिससे मिश्रण को रोका जा सकता है।
  • गर्मी का हस्तांतरण: तरल पदार्थों को अलग करने वाली ठोस दीवार या सतह पर होता है।

निर्माण:

इसमें आमतौर पर शामिल हैं:

संलग्न चैनल दूसरे तरल पदार्थ (जैसे, पानी या रेफ्रिजरेंट) को ट्यूबों के अंदर प्रवाहित करने के लिए।

ट्यूब या पंखदार सतहें जहां एक तरल पदार्थ (जैसे, हवा) ट्यूबों के पार बहता है।

सामान्य अनुप्रयोग:

  • कारों में रेडिएटर
  • एयर कंडीशनिंग सिस्टम
  • औद्योगिक HVAC प्रणालियाँ
  • हीट रिकवरी वेंटिलेटर (HRVs)

लाभ:

  • तरल पदार्थों के बीच कोई संदूषण नहीं
  • सरल रखरखाव और सफाई
  • उन गैसों और तरल पदार्थों के लिए अच्छा है जिन्हें अलग रहना चाहिए

काउंटरफ्लो हीट एक्सचेंजर कैसे काम करता है?

प्रतिप्रवाह ऊष्मा विनिमायक में, दो समीपवर्ती एल्युमीनियम प्लेटें वायु के प्रवाह के लिए चैनल बनाती हैं। आपूर्ति वायु प्लेट के एक ओर से और निकास वायु दूसरी ओर से प्रवाहित होती है। वायु प्रवाह एक दूसरे से समानांतर एल्युमीनियम प्लेटों के साथ प्रवाहित होता है, न कि अनुप्रस्थ ऊष्मा विनिमायक की तरह लंबवत। निकास वायु की ऊष्मा प्लेट के माध्यम से गर्म वायु से ठंडी वायु में स्थानांतरित होती है।
कभी-कभी, निकास वायु आर्द्रता और प्रदूषकों से दूषित होती है, लेकिन वायु प्रवाह कभी भी प्लेट हीट एक्सचेंजर के साथ मिश्रित नहीं होता है, जिससे आपूर्ति वायु ताजा और स्वच्छ रहती है।

प्लेट हीट रिकवरी एक्सचेंजर चीन में निर्मित

हीट एक्सचेंजर मुख्यतः एल्युमिनियम फ़ॉइल, स्टेनलेस स्टील फ़ॉइल या पॉलिमर जैसी सामग्रियों से बने होते हैं। जब एल्युमिनियम फ़ॉइल द्वारा पृथक वायु प्रवाह और विपरीत दिशाओं में प्रवाहित वायुप्रवाह के बीच तापमान का अंतर होता है, तो ऊष्मा स्थानांतरण होता है और ऊर्जा की पुनर्प्राप्ति होती है। एयर-टू-एयर हीट एक्सचेंजर का उपयोग करके, निकास में ऊष्मा का उपयोग ताज़ी हवा को पहले से गर्म करने के लिए किया जा सकता है, जिससे ऊर्जा संरक्षण का लक्ष्य प्राप्त होता है। हीट एक्सचेंजर एक अद्वितीय बिंदु सतह संयोजन सील प्रक्रिया का उपयोग करता है, जिसकी लंबी सेवा जीवन, उच्च तापमान चालकता, कोई प्रवेश नहीं, और निकास गैस के प्रवेश के कारण कोई द्वितीयक प्रदूषण नहीं होता है।

Plate heat recovery exchanger

औद्योगिक हीट रीसायकल बिन श्रृंखला

टिप्पणी:

          1. 200°C से कम तापमान वाले औद्योगिक अपशिष्ट गैस से निकलने वाली ऊष्मा को ताज़ा हवा को गर्म करने के लिए पुनः प्राप्त किया जा सकता है

          2. हीट रीसायकल बॉक्स की संरचना साइट की स्थिति के अनुसार डिज़ाइन की जा सकती है।

          3. इस संरचना में कोई फीडिंग या एग्जॉस्ट फैन नहीं है।

          4. इस तालिका में दी गई ऊष्मा पुनर्प्राप्ति दक्षता वायु आपूर्ति और निकास आयतन के बराबर है। आप विभिन्न वायु आपूर्ति और निकास आयतन के लिए ऊष्मा पुनर्प्राप्ति दक्षता के लिए हमारी कंपनी से परामर्श ले सकते हैं।

          5. गर्मी वसूली बॉक्स फर्श प्रकार, छत प्रकार और अन्य संरचनात्मक प्रकार (सामान्य हवा की मात्रा 100000m% / एच डराने के लिए) में बनाया जा सकता है।

मदद की ज़रूरत है?
hi_INहिन्दी