Archives de balises Échangeur de chaleur à flux croisés

comment fonctionne un échangeur de chaleur à flux croisés

UN échangeur de chaleur à flux croisés Ce système fonctionne en permettant à deux fluides de circuler perpendiculairement l'un à l'autre, généralement l'un circulant dans des tubes et l'autre à l'extérieur de ces derniers. Le principe fondamental est que la chaleur est transférée d'un fluide à l'autre à travers les parois des tubes. Voici son fonctionnement étape par étape :

Composants:

  1. Côté tube:L’un des fluides circule dans les tubes.
  2. Côté coquille:L'autre fluide s'écoule sur les tubes, à travers le faisceau de tubes, dans une direction perpendiculaire à l'écoulement du fluide à l'intérieur des tubes.

Processus de travail :

  1. Entrée de fluide:Les deux fluides (chaud et froid) pénètrent dans l'échangeur de chaleur par des entrées différentes. L'un (le fluide chaud) pénètre par les tubes, tandis que l'autre (le fluide froid) pénètre à l'extérieur des tubes.
  2. Écoulement de fluide:

    • Le fluide circulant à l'intérieur des tubes se déplace selon un trajet rectiligne ou légèrement tortueux.
    • Le fluide s'écoulant à l'extérieur des tubes les traverse perpendiculairement. Son trajet peut être transversal (directement à travers les tubes) ou présenter une configuration plus complexe, combinant un courant transversal et un courant à contre-courant.

  3. Transfert de chaleur:

    • La chaleur du fluide chaud est transférée aux parois des tubes, puis au fluide froid circulant à travers les tubes.
    • L'efficacité du transfert de chaleur dépend de la différence de température entre les deux fluides. Plus la différence de température est importante, plus le transfert de chaleur est efficace.

  4. SortieAprès le transfert de chaleur, le fluide chaud, plus froid, sort par une sortie, et le fluide froid, plus chaud, sort par une autre. L'échange thermique entraîne une variation de température des deux fluides lors de leur circulation dans l'échangeur.

Variations de conception :

  • Flux transversal à passage unique:Un fluide circule dans une seule direction à travers les tubes, et l'autre fluide se déplace à travers les tubes.
  • Flux transversal multipasse:Le fluide à l'intérieur des tubes peut s'écouler en plusieurs passes pour augmenter le temps de contact avec le fluide à l'extérieur, améliorant ainsi le transfert de chaleur.

Considérations relatives à l’efficacité :

  • Les échangeurs de chaleur à flux croisés sont généralement moins efficaces que les échangeurs à contre-courant, car le gradient de température entre les deux fluides diminue sur la longueur de l'échangeur. En contre-courant, les fluides maintiennent une différence de température plus constante, ce qui améliore l'efficacité du transfert de chaleur.
  • Cependant, les échangeurs de chaleur à flux croisés sont plus faciles à concevoir et sont souvent utilisés dans des situations où l'espace est limité ou lorsque les fluides doivent être séparés (comme dans les échangeurs de chaleur air-air).

Applications :

  • Échangeurs de chaleur refroidis par air (comme dans les systèmes CVC ou les radiateurs de voiture).
  • Refroidissement des équipements électroniques.
  • Échangeurs de chaleur pour systèmes de ventilation.

Ainsi, bien qu'ils ne soient pas aussi efficaces thermiquement que les échangeurs de chaleur à contre-courant, les conceptions à flux croisés sont polyvalentes et couramment utilisées lorsque la simplicité ou le gain de place sont importants.

profil de température pour l'échangeur de chaleur à flux croisés

Voici une ventilation de la profil de température pour un échangeur de chaleur à flux croisés, en particulier lorsque les deux fluides ne sont pas mélangés:


🔥 Échangeur de chaleur à flux croisés – Les deux fluides ne sont pas mélangés

➤ Disposition des flux :

  • Un fluide s’écoule horizontalement (par exemple, un fluide chaud dans des tubes).
  • L'autre circule verticalement (par exemple, l'air froid à travers les tubes).
  • Aucun mélange dans ou entre les fluides.


📈 Description du profil de température :

▪ Fluide chaud :

  • Température d'entrée: Haut.
  • Au fur et à mesure qu'il coule, il perd de la chaleur au fluide froid.
  • Température de sortie:Inférieure à l'entrée, mais pas uniforme dans tout l'échangeur en raison du temps de contact variable.

▪ Fluide froid :

  • Température d'entrée: Faible.
  • Gagne de la chaleur en circulant à travers les tubes chauds.
  • Température de sortie:Plus élevé, mais varie également selon l'échangeur.

🌀 En raison du flux croisé et de l'absence de mélange :

  • Chaque point de l'échangeur voit un gradient de température différent, en fonction de la durée pendant laquelle chaque fluide a été en contact avec la surface.
  • La distribution de température est non linéaire et plus complexe que dans les échangeurs à contre-courant ou à flux parallèles.


📊 Profil de température typique (disposition schématique) :

                ↑ Fluide froid dans

Élevé │ ┌──────────────┐
Température │ │ │
│ │ │ → Fluide chaud à l'intérieur (côté droit)
│ │ │
↓ └──────────────┘
Sortie de fluide froid ← Sortie de fluide chaud

⬇ Courbes de température :

  • fluide froid se réchauffe progressivement — la courbe commence bas et s'incline vers le haut.
  • fluide chaud se refroidit — commence haut et s'incline vers le bas.
  • Les courbes sont pas parallèle, et pas symétrique en raison de la géométrie du flux croisé et du taux d'échange de chaleur variable.


🔍 Efficacité :

  • L’efficacité dépend de la rapport de capacité thermique et le NTU (nombre d'unités de transfert).
  • En général moins efficace que le contre-courant mais plus efficace que le flux parallèle.

échangeur de chaleur à flux croisés avec les deux fluides non mélangés

UN échangeur de chaleur à flux croisés avec les deux fluides non mélangés désigne un type d'échangeur de chaleur dans lequel deux fluides (chaud et froid) s'écoulent perpendiculairement (à 90°) l'un à l'autre, et aucun des deux fluides ne se mélange à l'intérieur ou avec l'autre. Cette configuration est courante dans des applications telles que récupération de chaleur air-air ou radiateurs automobiles.

Caractéristiques principales :

  • flux transversal:Les deux fluides se déplacent à angle droit l'un par rapport à l'autre.
  • fluides non mélangés:Les fluides chauds et froids sont confinés dans leurs passages d'écoulement respectifs par des parois solides ou des ailettes, empêchant tout mélange.
  • Transfert de chaleur:Se produit à travers la paroi solide ou la surface séparant les fluides.

Construction:

Comprend généralement :

Canaux fermés pour que le deuxième fluide (par exemple, de l'eau ou du réfrigérant) circule à l'intérieur des tubes.

Tubes ou surfaces à ailettes où un fluide (par exemple, de l'air) circule à travers les tubes.

Applications courantes :

  • Radiateurs dans les voitures
  • Systèmes de climatisation
  • Systèmes CVC industriels
  • Ventilateurs récupérateurs de chaleur (VRC)

Avantages :

  • Aucune contamination entre les fluides
  • Entretien et nettoyage simples
  • Idéal pour les gaz et les fluides qui doivent rester séparés

un échangeur de chaleur à flux croisés utilisé dans un appareil cardiopulmonaire

Un échangeur de chaleur à flux croisés en contexte cardio-pulmonaire, comme lors d'une circulation extracorporelle (CEC), est un composant essentiel pour réguler la température sanguine du patient. Ces dispositifs sont généralement intégrés aux machines cœur-poumons pour réchauffer ou refroidir le sang lors de sa circulation extracorporelle lors d'opérations à cœur ouvert ou d'autres interventions nécessitant une assistance cardiaque et pulmonaire temporaire.

Comment ça marche

Dans un échangeur de chaleur à flux croisés, deux fluides – généralement du sang et un fluide caloporteur (comme l'eau) – circulent perpendiculairement l'un à l'autre, séparés par une surface solide (par exemple, des plaques/tubes métalliques ou polymères) qui facilite le transfert de chaleur sans mélange des fluides. Cette conception optimise l'efficacité de l'échange thermique tout en préservant la biocompatibilité et en minimisant les traumatismes sanguins.

  • trajet du flux sanguin:Le sang oxygéné provenant de la machine cœur-poumon circule à travers un ensemble de canaux ou de tubes.
  • Chemin d'écoulement de l'eau:L'eau à température contrôlée circule à travers un ensemble de canaux adjacents dans une direction perpendiculaire, réchauffant ou refroidissant le sang en fonction du besoin clinique (par exemple, en induisant une hypothermie ou un réchauffement).
  • Transfert de chaleurLe gradient de température entre le sang et l'eau favorise l'échange thermique à travers la surface conductrice. La disposition à flux croisés assure un taux de transfert thermique élevé grâce à la différence de température constante à travers l'échangeur.

Caractéristiques principales

  1. Biocompatibilité:Les matériaux (par exemple, l’acier inoxydable, l’aluminium ou les polymères de qualité médicale) sont choisis pour prévenir la coagulation, l’hémolyse ou les réactions immunitaires.
  2. Conception compacte: Cross-flow exchangers are space-efficient, crucial for integration into CPB circuits.
  3. Efficiency: The perpendicular flow maximizes the temperature gradient, improving heat transfer compared to parallel-flow designs.
  4. Sterility: The system is sealed to prevent contamination, with disposable components often used for single-patient procedures.
  5. Control: Paired with a heater-cooler unit, the exchanger maintains precise blood temperature (e.g., 28–32°C for hypothermia, 36–37°C for normothermia).

Applications in Cardiopulmonary Procedures

  • Hypothermia Induction: During CPB, the blood is cooled to reduce metabolic demand, protecting organs like the brain and heart during reduced circulation.
  • Rewarming: After surgery, the blood is gradually warmed to restore normal body temperature without causing thermal stress.
  • Temperature Regulation: Maintains stable blood temperature in extracorporeal membrane oxygenation (ECMO) or other long-term circulatory support systems.

Design Considerations

  • Surface Area: Larger surface areas improve heat transfer but must balance with minimizing priming volume (the amount of fluid needed to fill the circuit).
  • Débits: Blood flow must be turbulent enough for efficient heat transfer but not so high as to damage red blood cells.
  • Chute de pression: The design minimizes resistance to blood flow to avoid excessive pump pressure.
  • Infection Control: Stagnant water in heater-cooler units can harbor bacteria (e.g., Mycobacterium chimaera), necessitating strict maintenance protocols.

Example

A typical cross-flow heat exchanger in a CPB circuit might consist of a bundle of thin-walled tubes through which blood flows, surrounded by a water jacket where temperature-controlled water circulates in a perpendicular direction. The exchanger is connected to a heater-cooler unit that adjusts water temperature based on real-time feedback from the patient’s core temperature.

Challenges and Risks

  • Hemolysis: Excessive shear stress from turbulent flow can damage blood cells.
  • Thrombogenicity: Surface interactions may trigger clot formation, requiring anticoagulation (e.g., heparin).
  • Air Embolism: Improper priming can introduce air bubbles, a serious risk during bypass.
  • Infections: Contaminated water in heater-cooler units has been linked to rare but severe infections.

Système de récupération et de réutilisation de la chaleur perdue du four - schéma d'échangeur de chaleur à flux croisés en acier inoxydable à gaz

The kiln waste heat recovery and reuse system aims to fully utilize the high-temperature heat in the kiln exhaust gas, and achieve a win-win situation of energy conservation and environmental protection through gas stainless steel cross flow heat exchangers. The core of this solution lies in the use of a stainless steel cross flow heat exchanger, which efficiently exchanges heat between high-temperature exhaust gas and cold air, generating hot air that can be reused.

Working principle: The exhaust gas and cold air flow in a cross flow manner inside the heat exchanger and transfer heat through the stainless steel plate wall. After releasing heat from exhaust gas, it is discharged. Cold air absorbs the heat and heats up into hot air, which is suitable for scenarios such as assisting combustion, preheating materials, or heating.

Avantages :

Efficient heat transfer: The cross flow design ensures a heat transfer efficiency of 60% -80%.
Strong durability: Stainless steel material is resistant to high temperatures and corrosion, and can adapt to complex exhaust environments.
Flexible application: Hot air can be directly fed back to the kiln or used for other processes, with significant energy savings.
System process: Kiln exhaust gas → Pre treatment (such as dust removal) → Stainless steel heat exchanger → Hot air output → Secondary utilization.

This solution is simple and reliable, with a short investment return cycle, making it an ideal choice for kiln waste heat recovery, helping enterprises reduce energy consumption and improve efficiency.

Application of Cross Flow Heat Exchanger in Indirect Evaporative Cooling System of Data Center

The application of cross flow heat exchangers in Indirect Evaporative Cooling (IDEC) systems in data centers is mainly reflected in efficient heat exchange, reducing energy consumption, and improving data center cooling efficiency. Here are its key roles and advantages:

  1. Basic working principle
    Cross flow heat exchanger is a type of heat exchange device whose structure allows two streams of air to cross each other while maintaining physical isolation. In indirect evaporative cooling systems in data centers, it is typically used for heat exchange between cooling air and outdoor ambient air without direct mixing.
    The workflow is as follows:
    The primary air (data center return air) exchanges heat with the secondary air (external ambient air) through one side of the heat exchanger.
    The secondary air evaporates and cools in the humidification section, reducing its own temperature, and then absorbs heat in the heat exchanger to cool the primary air.
    After the primary air is cooled down, it is sent back to the data center to cool down the IT equipment.
    The secondary air is ultimately discharged outdoors without entering the interior of the data center, thus avoiding the risk of pollution.
  2. Advantages in Data Centers
    (1) Efficient and energy-saving, reducing cooling demand
    Reduce cooling load: By using cross flow heat exchangers, data centers can utilize external air cooling instead of relying on traditional mechanical refrigeration (such as compressors).
    Improve PUE (Power Usage Effectiveness): Reduce the operating time of mechanical cooling equipment, lower energy consumption, and make PUE values closer to the ideal state (below 1.2).
    (2) Completely physically isolated to avoid contamination
    Cross flow heat exchangers can ensure that outdoor air does not come into direct contact with the air inside the data center, avoiding pollution, dust, or humidity affecting IT equipment. They are suitable for data centers with high air quality requirements.
    (3) Suitable for various climatic conditions
    In dry or warm climates, indirect evaporative cooling systems are particularly effective and can significantly reduce the cooling costs of data centers.
    Even in areas with high humidity, optimizing the design of heat exchangers can improve heat exchange efficiency.
    (4) Reduce water resource consumption
    Compared to direct evaporative cooling (DEC), indirect evaporative cooling does not require direct spraying of water into the air of the data center, but rather indirect cooling through a heat exchanger, thus reducing water loss.
  3. Applicable scenarios
    Cross flow heat exchangers are widely used in the following types of data centers:
    Hyperscale Data Center: Requires efficient and energy-saving cooling solutions to reduce operating costs.
    Cloud computing data center: requires high PUE values and seeks more sustainable cooling methods.
    Edge Data Center: typically located in harsh environments, requiring efficient and low maintenance cooling systems.
  4. Challenge and Optimization Plan
    Heat exchanger size and efficiency: Larger cross flow heat exchangers can improve heat exchange efficiency, but they also increase the footprint, so optimization design is needed, such as using aluminum or composite material heat exchangers to improve heat exchange efficiency.
    Scaling and maintenance: Due to humidity changes, heat exchangers may experience scaling issues, requiring regular cleaning and the use of corrosion-resistant coatings to extend their lifespan.
    Control system optimization: Combined with intelligent control, dynamically adjust the working mode of the heat exchanger based on external environmental temperature, humidity, and data center load conditions to improve system adaptability.
  5. Future Development Trends
    New efficient heat exchange materials, such as nano coated heat exchangers, further improve heat exchange efficiency.
    Combined with AI intelligent control system, dynamically adjust the heat exchange according to the real-time load of the data center.
    Combining liquid cooling technology to further improve heat dissipation efficiency in high-density server rooms.

Cross flow heat exchangers play an important role in the indirect evaporative cooling system of data centers, providing efficient heat transfer, reducing energy consumption, minimizing pollution, and improving equipment reliability. They are currently one of the important technologies in the field of data center cooling, especially suitable for large-scale, high-efficiency data centers.

Besoin d'aide?
fr_BEFrançais de Belgique