Архив метки теплообменник

Как выбрать правильный теплообменник?

Выбор подходящего теплообменника требует оценки нескольких ключевых факторов, чтобы убедиться, что он соответствует потребностям вашего оборудования, оптимизируя эффективность, стоимость и производительность. Вот краткое руководство, которое поможет вам принять обоснованное решение:

  1. Поймите требования к вашему заявлению:
    • Свойства жидкости: Определите используемые жидкости (например, вода, масло или коррозионные жидкости) и их характеристики, такие как вязкость, содержание твердых частиц и коррозионная активность. Для вязких жидкостей или жидкостей с твердыми частицами могут потребоваться трубчатые или скребковые теплообменники, в то время как для жидкостей с низкой вязкостью хорошо подходят пластинчатые теплообменники.
    • Тепловые требования: Определите требуемую скорость теплопередачи, температуры на входе и выходе, а также наличие фазовых переходов (например, испарения или конденсации). Рассчитайте начальную разность температур (ITD), вычитая температуру входящей холодной жидкости из температуры входящей горячей жидкости, чтобы оценить требуемые тепловые характеристики.
    • Расходы: Оцените расход обеих жидкостей (например, литры в минуту или галлоны в минуту), чтобы убедиться, что теплообменник справится с пропускной способностью. При крупномасштабном производстве отдайте приоритет энергоэффективности; при небольших партиях сосредоточьтесь на минимизации потерь продукта.
  2. Выберите подходящий тип:
    • Пластинчатые теплообменники: Идеально подходят для высокоэффективных систем низкого и среднего давления с простыми жидкостями, такими как молоко или маловязкие масла. Они обеспечивают высокую теплопередачу, компактны и просты в обслуживании, но ограничены прочностью прокладок при высоких температурах (до 175 °C) или давлении (до 290 кПа).
    • Кожухотрубчатые теплообменники: Подходят для работы в условиях высокого давления и высоких температур (например, в нефтегазовой и химической промышленности). Они прочны и экономичны, но менее эффективны, чем пластинчатые конструкции, и их сложнее очищать.
    • Скребковые теплообменники: Идеально подходят для высоковязких жидкостей, жидкостей с крупными частицами или процессов, связанных с фазовыми переходами (например, мороженого, соусов). Они дороги, но эффективны для непрерывной обработки и предотвращения загрязнения.
    • Другие типы: Рассмотрите возможность использования теплообменников с воздушным охлаждением или компактных теплообменников для особых случаев применения, например, в автомобильной промышленности или в условиях ограниченного пространства.
  3. Оценить условия эксплуатации:
    • Давление и температура: Убедитесь, что теплообменник способен выдерживать максимальное расчетное давление и температуру. Для применения в условиях высокого давления/температуры могут потребоваться кожухотрубные теплообменники или специальные конструкции, например, пластины с углублениями.
    • Загрязнение и техническое обслуживание: Оцените вероятность загрязнения ваших жидкостей (например, седиментации, биологического обрастания). Пластинчатые теплообменники легче очищать, а конструкции со скребковой поверхностью снижают загрязнение в вязких средах. Укажите коэффициенты загрязнения (например, 0,0002–0,001 м²К/Вт для трубчатых конструкций), чтобы учесть снижение производительности.
    • Падение давления: Рассчитайте допустимое падение давления с учётом ограничений вашей системы (например, производительности насоса). Конструкции с меньшим падением давления, например, кожухотрубные, могут экономить энергию.
  4. Учитывайте ограничения по размеру и пространству:
    • Оцените доступное пространство для установки, обслуживания и возможного расширения. Пластинчатые теплообменники компактны и модульны, что позволяет легко регулировать производительность путём добавления/удаления пластин. Завышение размера на 30–40% позволяет рекуперировать тепло, если позволяет пространство.
    • Для ограниченного пространства следует рассмотреть компактные теплообменники с высоким отношением площади поверхности к объему (например, ≥700 м²/м³ для применений «газ-газ»).
  5. Выбор материала:
    • Выбирайте материалы, совместимые с вашими жидкостями и условиями эксплуатации:
      • Нержавеющая сталь: прочный, устойчивый к коррозии и легко моющийся, идеально подходит для большинства применений.
      • Титан: Легкий, не подвержен коррозии, подходит для экстремальных температур или химических процессов, но дорогой.
      • Алюминий: Экономичен для промышленного применения, но менее устойчив к коррозии.
      • Графит или керамика: Для высококоррозионных или высокотемпературных жидкостей.
    • Обеспечьте совместимость материалов с прокладками в пластинчатых теплообменниках, чтобы избежать отказов.
  6. Стоимость и эффективность:
    • Сбалансируйте первоначальные инвестиции с долгосрочными эксплуатационными расходами. Пластинчатые теплообменники, как правило, являются наименее дорогими и наиболее энергоэффективными, в то время как скребковые теплообменники стоят дороже, но необходимы для определенных применений.
    • Ориентируйтесь на совокупную стоимость владения (TCO) за 3–4 года. Энергоэффективные проекты часто имеют быструю окупаемость (например, <1 года для крупномасштабных проектов).
    • Рассмотрите экологически безопасные варианты, такие как естественное охлаждение электрошкафов, чтобы сократить расходы на электроэнергию.
  7. Проконсультируйтесь с производителями и используйте инструменты:
    • Используйте предоставленные производителем сравнительные таблицы или графики производительности, чтобы подобрать модели в соответствии с вашими требованиями к температуре и потоку (например, Вт/°C для определенных расходов).
    • Обратитесь за профессиональной консультацией для проверки расчётов и обеспечения соответствия конструкции стандартам безопасности и производительности. Производители могут помочь с выбором размера, установкой и планированием обслуживания.
  8. Избегайте распространенных ошибок:
    • Если пространство ограничено, не увеличивайте его без необходимости, так как это увеличивает затраты, не принося никакой выгоды.
    • Избегайте выбора конструкции исключительно на основе стоимости или традиций (например, полагая, что трубчатая конструкция лучше всего подходит для вязких жидкостей). Оцените новые технологии, такие как конструкции с гофрированными трубками, для повышения производительности.
    • Убедитесь, что теплообменник соответствует целям процесса (например, пастеризация, охлаждение), чтобы избежать проблем с качеством или неполной обработки.

Пример расчета: Для охлаждения жидкости с 80°C до 40°C воздухом при температуре 21°C и расходе 2 галлона в минуту рассчитайте ITD (80°C – 21°C = 59°C). Воспользуйтесь графиками производительности, чтобы выбрать модель с требуемой теплопередачей (например, 56 Вт/°C для медного теплообменника). Проверьте перепад давления (например, 8 фунтов на кв. дюйм при расходе 2 галлона в минуту), чтобы убедиться в совместимости с насосом.

Рекомендация: Начните с определения свойств вашей жидкости, тепловых потребностей и ограничений по пространству. Для простых жидкостей и установок с ограниченным пространством отдайте предпочтение пластинчатым теплообменникам. Для высоковязких или содержащих твердые частицы жидкостей рассмотрите конструкции со скребковой поверхностью или трубчатые конструкции. Проконсультируйтесь с производителями, чтобы окончательно определить модель и размер, убедившись, что они соответствуют вашему технологическому процессу и бюджету.

Что такое пластинчатый теплообменник «газ-газ»?

Что такое пластинчатый теплообменник «газ-газ»?

Gas-Gas Plate Heat Exchanger

Gas-Gas Plate Heat Exchanger

A gas-gas plate heat exchanger is a highly efficient heat transfer device designed to recover heat from high-temperature exhaust gases and transfer it to incoming cold air or other gas streams. Unlike traditional heat exchangers, its compact plate structure maximizes the heat transfer surface area, achieving thermal efficiencies of 60% to 80%. The exchanger consists of thin, corrugated metal plates (typically stainless steel) that create separate channels for hot and cold gases, allowing heat to pass through the plates without mixing the gas streams.

This technology is particularly suited for industrial processes that generate significant waste heat, such as drying systems in ultrasonic cleaning machines used for hardware components. By capturing and reusing this heat, the gas-gas plate heat exchanger reduces the energy required for heating processes, lowering operational costs and carbon emissions.

how does a heat exchanger work in a boiler

А heat exchanger in a boiler transfers heat from the combustion gases to the water circulating in the system. Here's how it works step by step:

  1. Combustion occurs: The boiler burns a fuel source (like natural gas, oil, or electricity), creating hot combustion gases.

  2. Heat transfer to the heat exchanger: These hot gases flow through a heat exchanger—typically a coiled or finned metal tube or series of plates made of steel, copper, or aluminum.

  3. Water circulation: Cold water from the central heating system is pumped through the heat exchanger.

  4. Heat absorption: As the hot gases pass over the surfaces of the heat exchanger, heat is conducted through the metal into the water inside.

  5. Hot water delivery: The now-heated water is circulated through radiators or to hot water taps, depending on the boiler type (combi or system boiler).

  6. Gas expulsion: The cooled combustion gases are vented out through a flue.

In condensing boilers, there's an extra stage:

  • After the initial heat transfer, the remaining heat in the exhaust gases is used to preheat incoming cold water, extracting even more energy and improving efficiency. This process often creates condensate (water), which is drained from the boiler.

Удаляет ли теплообменник влагу?

Стандартный теплообменник типа «воздух-воздух» в первую очередь передаёт тепло между двумя потоками воздуха и не удаляет влагу напрямую. Потоки воздуха остаются разделёнными, поэтому влага (влага) из одного потока воздуха обычно остаётся внутри него. Однако существуют нюансы, зависящие от типа теплообменника:

  1. Явные теплообменники: Эти теплообменники (например, большинство пластинчатых или трубчатых теплообменников) переносят только тепло, но не влагу. Уровень влажности входящего и выходящего воздуха остаётся неизменным, хотя относительная влажность может немного меняться из-за изменений температуры (более тёплый воздух может содержать больше влаги, поэтому нагрев входящего воздуха может снизить его относительную влажность).
  2. Энтальпийные (полные энергетические) обменники: Некоторые современные конструкции, такие как роторные или некоторые мембранные теплообменники, могут переносить как тепло, так и влагу. Такие вентиляторы называются гигроскопическими или рекуператорами энтальпии (ERV). Материал сердечника или ротора поглощает влагу из влажного воздуха (например, тёплого влажного воздуха в помещении) и переносит её в более сухой воздух (например, холодный сухой наружный воздух), в некоторой степени эффективно регулируя уровень влажности.
  3. Эффекты конденсации: При определённых условиях, если теплообменник охлаждает влажный воздух ниже точки росы, на его поверхностях может образовываться конденсат, удаляющий часть влаги из воздушного потока. Это дополнительная, а не основная функция, требующая дренажной системы.

Таким образом, стандартный теплообменник не удаляет влагу, если только это не энтальпийный воздухораспределитель, предназначенный для переноса влаги, или если в нём не происходит конденсация. Если же целью является контроль влажности, вам понадобится воздухораспределитель или отдельная система осушения.

Производитель ZiBo QiYu

ZIBO QIYU AIR CONDITION ENERGY RECOVERY EQUIPMENT CO., LTD. We have kinds of air to air heat exchangers, such as AHU, HRV, heat tube heat exchangers, rotary heat exchangers, steam heating coil, surface air cooler.

All these products can be customized, you just need to tell me your requirements, and we have professional model selection software, we can help you choose the most suitable model.

If you're interested in our products, you can look through our website to get further information.

Website:https://www.huanrexi.com

Применение рекуператора тепла «воздух-воздух» в вентиляции животноводства

The Воздухо-воздушный рекуператор тепла Играет важную роль в индустрии вентиляции животноводства, повышая энергоэффективность и поддерживая оптимальные условия в помещениях. Этот теплообменник, предназначенный для рекуперации отходящего тепла отработанного воздуха, передает тепловую энергию от теплого, отработанного воздуха, выбрасываемого из животноводческих помещений, к поступающему свежему, более прохладному воздуху без смешивания двух потоков. В птичниках, свинарниках и других животноводческих помещениях, где критически важны постоянный контроль температуры и качество воздуха, он снижает расходы на отопление зимой за счет предварительного подогрева свежего воздуха и смягчает тепловой стресс летом благодаря эффективной терморегуляции. Обычно изготавливаемый из коррозионно-стойких материалов, таких как алюминий или нержавеющая сталь, он выдерживает влажные условия с высоким содержанием аммиака, характерные для животноводческих помещений. Интегрируясь в системы вентиляции, теплообменник не только снижает потребление энергии, но и способствует устойчивым методам ведения сельского хозяйства, обеспечивая благополучие животных и эксплуатационную эффективность. Его применение особенно ценно в крупномасштабных животноводческих хозяйствах, стремящихся к достижению баланса между экономической эффективностью и экологической ответственностью.

Air-to-Air Heat Recovery Exchanger

Пластинчатый теплообменник для сушки белья в гостиницах и прачечных

Application principle:
During the washing and drying process of linen, steam or hot water enters one side of the plate heat exchanger as a high-temperature fluid, while the air to be heated (for drying) enters the other side as a low-temperature fluid. Through a plate heat exchanger, the high-temperature fluid transfers heat to the low-temperature fluid, causing the air temperature to rise and achieving the purpose of preheating.
Plate heat exchangers have good thermal conductivity and can effectively transfer the heat of steam to linen, improving thermal efficiency. This means that the drying process of linen can be completed faster or energy consumption can be reduced with the same energy consumption.
Structural design: The plate heat exchanger is composed of multiple thin metal plates that form sealed channels between them. Metal plates are usually made of materials with good thermal conductivity, such as aluminum foil, copper foil, or stainless steel foil.
Energy saving and environmental protection: By recycling and reusing heat energy, plate heat exchangers can reduce steam consumption, lower energy consumption, and protect the environment. This is particularly important for places such as hotels, guesthouses, hospitals, and the laundry industry that require a large amount of washing and drying of linen.
The application principle of the plate heat exchange core of the linen washing and drying heat exchanger is based on the basic principles of heat conduction and convection, and efficient heat exchange is achieved through reasonable structural design and material selection.

Теплообменник для сушки шлама

Air heat exchangers play a crucial role in the low-temperature drying process of sludge. Based on the thermal conductivity and corrosion resistance of epoxy aluminum foil material, efficient low-temperature drying of sludge is achieved by optimizing the heat exchange process.


working principle:
It uses a heat pump system to cool and dehumidify the humid air from the drying chamber through an evaporator, while heating and reheating it through a condenser to produce dry hot air that is sent into the drying chamber.
Application effect:
Epoxy aluminum foil, as a material for heat exchangers, has efficient thermal conductivity that helps to quickly transfer heat and improve heat exchange efficiency. Meanwhile, due to its corrosion resistance, it can effectively resist the erosion of corrosive gases and substances that may be generated during the sludge drying process, extending the service life of the equipment.
The application principle of the low-temperature sludge dryer heat exchanger is mainly based on the thermal conductivity and corrosion resistance of epoxy aluminum foil material. By optimizing the heat exchange process, efficient low-temperature sludge drying can be achieved.

Пластинчатый теплообменник для сушки говядины и свинины

working principle:
During the drying process of beef and pork, the high-temperature moisture (exhaust gas) generated is transferred to the fresh air entering the system through the heat exchange core. In this way, fresh air is preheated before entering the drying area, thereby reducing the energy consumption required to heat the fresh air.
Structural features:
High quality hydrophilic aluminum foil is commonly used as a heat transfer conductor, with good heat transfer efficiency and a long service life (generally up to 8-10 years)
The channels for fresh air and exhaust gases are arranged in a cross pattern, separated by aluminum foil to ensure the cleanliness of the fresh air and prevent the spread of any odors and moisture.
All connections are sealed with sealant and treated with biting edge flowing adhesive to ensure the airtightness of the heat exchanger.
Performance advantages:
The heat exchange efficiency can reach up to 90%, which can significantly reduce energy consumption.
Compact structure, small volume, suitable for installation and use in various occasions.
Easy to maintain, easy to clean, can be directly cleaned with tap water or neutral detergent.

Total heat recovery ventilation technology for home decoration fresh air system

The fresh air system is a common air treatment equipment in modern homes and commercial buildings, which can provide a continuous supply of fresh air and discharge indoor polluted air. In the fresh air system, heat recovery efficiency is a key indicator, and high heat recovery efficiency means that the system can more effectively recover energy during the ventilation process, thereby reducing energy consumption. Total heat exchange technology can recover heat and humidity while ventilating, reducing energy loss caused by ventilation and achieving energy conservation and consumption reduction.

Total heat recovery ventilation technology
Total heat recovery refers to the process in which a fresh air system, while introducing fresh outdoor air, recovers the heat and humidity from the discharged indoor air through a heat exchanger for heating or cooling the incoming fresh air. A total heat exchanger is an energy-saving device in a fresh air system that can exchange heat and humidity without mixing fresh air and exhaust air.
The application of total heat exchange technology not only reduces reliance on air conditioning and heating equipment, but also lowers overall energy consumption, in line with the concept of sustainable development. Choosing a suitable fresh air system can not only improve living comfort, but also achieve the goals of energy conservation, emission reduction, and carbon neutrality.

Нужна помощь?
ru_RUРусский