Архив категорий Информация об отрасли

Каковы формы утилизации тепла промышленных отходов?

Формы утилизации тепла промышленных отходящих газов включают:

  1. Восстановление теплообменника: использование теплообменников (например, пластинчатого, трубчатого или ребристого типа) для передачи тепла от отходящего газа к холодной жидкости (например, воде или воздуху) для нагрева технологической среды или выработки пара.
  2. Парогенератор: использование отходящего тепла для приведения в действие парогенератора, вырабатывающего пар для промышленных процессов или отопления.
  3. Технология тепловых трубок: использование теплообменников с тепловыми трубками для эффективной рекуперации отработанного тепла, часто применяется для рекуперации тепла при средних и низких температурах.
  4. Органический цикл Ренкина (ORC): использование отходящего тепла для приведения в действие системы ОЦР, преобразующей тепло в электричество, подходящей для средне- и низкотемпературного отопления.
  5. Системы тепловых насосов: Повышение температуры низкопотенциального отработанного тепла с помощью тепловых насосов для нужд отопления или технологических процессов.
  6. Прямое использование: Непосредственное использование отходящего тепла для предварительного нагрева сырья, воздуха или топлива, например, для предварительного нагрева воздуха для горения или сушки материалов.
  7. Комбинированная выработка тепла и электроэнергии (ТЭЦ): Интеграция отработанного тепла для производства электроэнергии и отопления с целью повышения общей энергоэффективности.
  8. Восстановление теплового хранилища: Хранение отработанного тепла в теплоаккумулирующих материалах (например, керамике или металлах) для последующего использования.

Как выбрать правильный теплообменник?

Choosing the right heat exchanger involves evaluating several key factors to ensure it meets your application’s needs while optimizing efficiency, cost, and performance. Here’s a concise guide to help you make an informed decision:

  1. Understand Your Application Requirements:
    • Fluid Properties: Identify the fluids involved (e.g., water, oil, or corrosive fluids) and their characteristics, such as viscosity, particulate content, and corrosiveness. Viscous fluids or those with particulates may require tubular or scraped-surface heat exchangers, while low-viscosity fluids work well with plate heat exchangers.
    • Thermal Requirements: Determine the required heat transfer rate, inlet and outlet temperatures, and whether phase changes (e.g., evaporation or condensation) are involved. Calculate the Initial Temperature Difference (ITD) by subtracting the incoming cold fluid temperature from the incoming hot fluid temperature to assess thermal performance needs.
    • Flow Rates: Assess the flow rates of both fluids (e.g., liters per minute or gallons per minute) to ensure the heat exchanger can handle the throughput. For large-scale production, prioritize energy efficiency; for small batches, focus on minimizing product losses.
  2. Select the Appropriate Type:
    • Пластинчатые теплообменники: Ideal for low to medium pressure, high-efficiency applications with simple fluids like milk or thin oils. They offer high heat transfer rates, compact size, and easy maintenance but are limited by gasket durability at high temperatures (up to 350°F) or pressures (up to 370 psi).
    • Shell-and-Tube Heat Exchangers: Suitable for high-pressure and high-temperature applications (e.g., oil and gas, chemical processing). They are robust and cost-effective but less efficient than plate designs and harder to clean.
    • Scraped-Surface Heat Exchangers: Best for highly viscous fluids, fluids with large particulates, or processes involving phase changes (e.g., ice cream, sauces). They are expensive but effective for continuous processing and fouling prevention.
    • Other Types: Consider air-cooled or compact heat exchangers for specific applications like automotive or space-constrained environments.
  3. Evaluate Operating Conditions:
    • Pressure and Temperature: Ensure the heat exchanger can handle the maximum design pressure and temperature. For high-pressure/temperature applications, shell-and-tube or specialized designs like dimple plates may be necessary.
    • Fouling and Maintenance: Assess the fouling potential of your fluids (e.g., sedimentation, biological growth). Plate heat exchangers are easier to clean, while scraped-surface designs reduce fouling in viscous applications. Specify fouling factors (e.g., 0.0002–0.001 m²K/W for tubular designs) to account for performance degradation.
    • Pressure Drop: Calculate allowable pressure drop based on your system’s constraints (e.g., pump capacity). Designs with lower pressure drops, like shell-and-tube, can save energy.
  4. Consider Size and Space Constraints:
    • Evaluate available space for installation, maintenance, and potential expansion. Plate heat exchangers are compact and modular, allowing easy capacity adjustments by adding/removing plates. Oversizing by 30–40% can enable heat recovery if space permits.
    • For tight spaces, consider compact heat exchangers with high surface area-to-volume ratios (e.g., ≥700 m²/m³ for gas-to-gas applications).
  5. Material Selection:
    • Choose materials compatible with your fluids and operating conditions:
      • Stainless Steel: Durable, corrosion-resistant, and easy to clean, ideal for most applications.
      • Titanium: Lightweight, non-corrosive, suitable for extreme temperatures or chemical processes but costly.
      • Aluminum: Cost-effective for industrial applications but less corrosion-resistant.
      • Graphite or Ceramic: For highly corrosive or high-temperature fluids.
    • Ensure material compatibility with gaskets in plate heat exchangers to avoid failures.
  6. Cost and Efficiency:
    • Balance initial investment with long-term operational costs. Plate heat exchangers are typically the least expensive and most energy-efficient, while scraped-surface designs are costlier but necessary for specific applications.
    • Focus on total cost of ownership (TCO) over 3–4 years. Energy-efficient designs often have quick payback periods (e.g., <1 year for large-scale operations).
    • Consider eco-friendly options like ambient cooling for electrical enclosures to reduce energy costs.
  7. Consult Manufacturers and Use Tools:
    • Use manufacturer-provided comparison charts or performance graphs to match models to your thermal and flow requirements (e.g., W/°C for specific flow rates).
    • Seek professional advice to validate calculations and ensure the design meets safety and performance standards. Manufacturers can assist with sizing, installation, and maintenance planning.
  8. Avoid Common Pitfalls:
    • Don’t oversize unnecessarily if space is limited, as it increases costs without benefits.
    • Avoid selecting a design based solely on cost or tradition (e.g., assuming tubular is best for viscous fluids). Evaluate newer technologies like corrugated tube designs for better performance.
    • Ensure the heat exchanger aligns with process goals (e.g., pasteurization, cooling) to avoid quality issues or incomplete processing.

Example Calculation: For cooling a liquid from 80°C to 40°C using air at 21°C with a flow rate of 2 gpm, calculate ITD (80°C – 21°C = 59°C). Refer to performance graphs to select a model meeting the required heat transfer rate (e.g., 56 W/°C for a copper heat exchanger). Check pressure drop (e.g., 8 psi at 2 gpm) to ensure pump compatibility.

Recommendation: Start by defining your fluid properties, thermal needs, and space constraints. For simple fluids and space-limited setups, prioritize plate heat exchangers. For high-viscosity or particulate-laden fluids, consider scraped-surface or tubular designs. Consult with manufacturers to finalize the model and size, ensuring it aligns with your process and budget.

Системы рекуперации энергии отходящего тепла: повышение эффективности производства

In today’s industrial landscape, where energy costs and environmental regulations are pressing concerns, waste heat recovery systems offer a powerful solution to enhance efficiency and sustainability. By capturing and reusing heat generated during industrial processes, these systems reduce energy waste and emissions. Zibo Qiyu Air-condition Energy Recovery Equipment Co., Ltd. leads the charge with innovative heat recovery technologies tailored for industries worldwide.

Why Waste Heat Recovery Matters

Industrial operations, such as those in steel, glass, and petrochemical sectors, produce vast amounts of waste heat—often 30-50% of total energy input. Recovering this heat through advanced systems like heat exchangers can significantly cut energy costs and greenhouse gas emissions. Applications include preheating raw materials, powering turbines, or heating facilities, making waste heat recovery a cornerstone of modern industrial efficiency.

Zibo Qiyu: Pioneering Heat Recovery Solutions

Headquartered in Zibo, Shandong, Zibo Qiyu Air-condition Energy Recovery Equipment Co., Ltd. specializes in state-of-the-art waste heat recovery systems, including air-to-air heat exchangers, plate sensible heat exchangers, and heat tube heat exchangers. Their solutions are designed to handle a wide range of heat sources, from low-grade (below 350°F) to high-temperature (above 750°F) waste heat, making them ideal for diverse industries.

Zibo Qiyu’s systems, such as modular heat recovery units, achieve up to 70% energy recovery, lowering operational costs while supporting environmental goals. Their products integrate seamlessly with industrial air conditioning and ventilation systems, ensuring cleaner air and efficient energy use. With a global footprint and over 150,000 customers served, Zibo Qiyu delivers reliable, customized solutions for industries in China, North America, and beyond.

Advantages of Zibo Qiyu’s Systems

  1. Cost Savings: Recovers waste heat to reduce energy expenses significantly.

  2. Sustainability: Lowers carbon footprint, aligning with global environmental standards.

  3. Versatile Applications: Tailored for industries like manufacturing, chemical processing, and power generation.

  4. Trusted Performance: Backed by global expertise and robust customer support.

Shaping the Future of Industrial Sustainability

As industries worldwide aim for net-zero targets, waste heat recovery systems are a practical step toward energy efficiency. Zibo Qiyu’s cutting-edge technologies empower businesses to reduce costs and environmental impact, paving the way for a greener industrial future.

Contact Zibo Qiyu for Heat Recovery Solutions

Unlock the potential of waste heat with Zibo Qiyu’s advanced energy recovery systems. Contact them today for tailored, high-performance solutions.

Contact Information:

  • Email: kuns913@gmail.com

  • Phone: (+1) 9152953666

  • WeChat: (+86) 15753355505

Power your industry’s future with Zibo Qiyu’s innovative waste heat recovery systems.

Эффективный, экологичный и надежный — чиллер с воздушным охлаждением QIYU, ваше ведущее решение для промышленного охлаждения!

ZIBO QIYU Aircondition Energy Equipment CO., LTD., a leader in indoor air quality research, is committed to providing efficient and eco-friendly HVAC solutions. Our air-cooled chiller series, featuring advanced technology and stable performance, is widely used in industries such as plastics, electronics, electroplating, food processing, pharmaceuticals, ink printing, vacuum forming, injection molding, laser processing, metal casting, blow molding, precision machinery, glass craftsmanship, jewelry processing, leather, aquaculture, papermaking, milk freezing, and chemical manufacturing. It helps you achieve energy savings and boost production efficiency.

Key Advantages:

  • Energy-Saving and Eco-Friendly: Uses R410A eco-friendly refrigerant with no cooling tower required, saving water resources and installation space—ideal for arid regions (e.g., northern China). Delivers efficient hourly cooling, minimizing carbon emissions and creating a green, healthy work environment.
  • High-Efficiency and Stable Operation: Equipped with top-brand compressors (e.g., Panasonic, Sanyo), renowned pumps, and axial fans for low noise, high pressure, and rapid heat dissipation. Fully automatic remote control system (Taiwanese controller) with temperature precision to 0.1°C and adjustable range of 5~30°C, supporting 24/7 continuous operation.
  • Smart Safety Protection: Integrates multiple electrical safeguards including phase loss/reversal, high/low pressure, overload, water level, and anti-freezing protection. Pre-commissioned at factory—simply connect power and water lines for immediate operation.
  • Flexible Customization: Optional features include stainless steel pumps, housings, multiple chilled water inlets/outlets, copper evaporators (higher heat exchange efficiency), negative pressure suction systems, or remote control to adapt to diverse environments.

Comprehensive Specifications, Superior Performance: Cooling capacity ranges from 2.4Kw to 73.5Kw with multiple models (e.g., LSJ series). Condenser features copper tubes + hydrophilic aluminum fins, evaporator uses stainless steel coil or shell-and-tube design, and 304 stainless steel tank enables automatic water replenishment for long-term durability.

Choose QIYU Air-Cooled Chiller for an efficient, reliable, and eco-friendly industrial partner! Contact us today to start your energy-saving cooling journey.

Система теплообмена с рекуперацией энергии циркуляции жидкости

The liquid circulation energy recovery heat exchange system uses ethylene glycol solution as the heat transfer medium, and transfers the cold (heat) in the exhaust air to the ethylene glycol solution through a heat exchanger on the exhaust side, reducing (increasing) the temperature of the ethylene glycol solution. Then, the cooled (heated) ethylene glycol solution is transported to the heat exchanger on the fresh air side through a circulation pump, reducing (increasing) the temperature of the fresh air, reducing the load on the fresh air system, and reducing the operating cost of the entire air conditioning system.

The liquid circulation energy recovery circulation system consists of an exhaust side heat exchanger, a fresh air side heat exchanger, connecting pipelines, and necessary accessories. Energy recovery is achieved through an ethylene glycol solution circulation pump, and the entire system is relatively complex. The ethylene glycol heat recovery module solves the problem of multiple connecting components and complex structure in the circulation system, and improves the reliability and safety of the heat exchange system. Fresh air and exhaust air will not produce cross pollution, making them more suitable for completely isolated supply and exhaust air, and even remote end supply air systems.

Liquid circulation energy recovery heat exchange system

Система теплообмена с рекуперацией энергии циркуляции жидкости

Как рекуперировать тепло из отходящих газов сушки

Рекуперация тепла отходящих газов промышленных сушильных установок — эффективный способ повышения энергоэффективности, снижения затрат и сокращения выбросов. Ниже представлено краткое руководство по рекуперации тепла отходящих газов сушилок с упором на практические этапы, технологии и рекомендации, разработанное с учетом ваших интересов в области воздухо-воздушных теплообменников и систем рекуперации отходящего тепла.

Меры по рекуперации тепла из отходящих газов сушилки

  1. Оценить характеристики выхлопных газов:
    • Измерьте температуру (обычно >60 °C для сушилок), скорость потока и состав выхлопных газов (например, влажность, пыль или коррозионные элементы).
    • Определите явное (основанное на температуре) и скрытое (основанное на влажности) содержание тепла.
    • Пример: температура выхлопных газов распылительной сушилки на предприятиях пищевой промышленности может составлять 80–150 °C при высокой влажности.
  2. Определите возможности теплоотвода:
    • Найдите близлежащие процессы, в которых можно использовать рекуперированное тепло, например, предварительный нагрев воздуха на входе в сушилку, нагрев технологической воды или снабжение объекта системами отопления, вентиляции и кондиционирования воздуха.
    • Для максимальной эффективности отдайте приоритет прямой интеграции (например, предварительному нагреву воздуха сушилки).
  3. Выберите подходящую технологию рекуперации тепла:
    • Воздухо-воздушные теплообменники (Основное направление):
      • Пластинчатые теплообменники: Используйте металлические или полимерные пластины для передачи тепла от выхлопных газов к входящему воздуху. Полимерные пластины устойчивы к коррозии и загрязнению, вызванному влажными и пыльными выхлопными газами.
      • Роторные теплообменники: Вращающиеся колеса передают тепло, идеально подходят для потоков большого объема.
      • Приложение: Предварительный нагрев воздуха на входе в сушилку, снижение расхода топлива до 20%.
    • Воздушно-жидкостные теплообменники:
      • Передача тепла воде или термальному маслу для технологического нагрева или питания котлов.
      • Приложение: Нагревание воды для промывки на пищевых или химических заводах.
    • Тепловые насосы:
      • Модернизация низкотемпературного отходящего тепла для повторного использования при сушке или других процессах.
      • Приложение: Увеличение температуры для предварительного нагрева воздуха сушилки при переработке молочных продуктов.
    • Теплообменники прямого контакта:
      • Выхлопные газы контактируют с водой для рекуперации тепла и очистки от загрязнений.
      • Приложение: Подходит для печей или сушилок С кислотными выхлопными газами.
    • Котлы-утилизаторы:
      • Генерация пара из высокотемпературных отходящих газов для использования в технологических процессах или для получения электроэнергии.
      • Приложение: Высокотемпературные сушилки в керамике.
  4. Проектирование и установка системы:
    • Совместно с поставщиком разработайте систему, отвечающую условиям отвода воздуха и потребностям вашей сушилки в теплоотводе.
    • Убедитесь, что материалы (например, полимер или нержавеющая сталь) устойчивы к загрязнению и коррозии.
    • Установите теплообменник после сушилки, с фильтрами или скрубберами, если присутствует пыль.
    • Пример: полимерный воздухо-воздушный теплообменник можно модернизировать в распылительной сушилке для предварительного подогрева входящего воздуха, что позволит сократить расходы на электроэнергию.
  5. Мониторинг и оптимизация производительности:
    • Используйте датчики для отслеживания температуры, расхода и эффективности рекуперации тепла.
    • Регулярно очищайте теплообменники, чтобы предотвратить их загрязнение.
    • Отрегулируйте настройки системы для максимизации теплопередачи в зависимости от производственных потребностей.

Энергосберегающие показатели технологии рекуперации тепла газ-газ в сушильном оборудовании

Технология рекуперации тепла «газ-газ» значительно повышает энергоэффективность сушильного оборудования за счёт рекуперации тепла отходящих газов и передачи его поступающему холодному воздуху. Это снижает энергозатраты на подогрев приточного воздуха, тем самым снижая расход топлива и эксплуатационные расходы.

В системах сушки, особенно в таких отраслях, как пищевая, табачная, бумажная промышленность и переработка шлама, обычно происходит значительная потеря тепловой энергии с отходящим воздухом. Благодаря интеграции газо-газового теплообменника, обычно изготовленного из алюминиевой или нержавеющей фольги, это отходящее тепло улавливается и используется повторно. Рекуперированная энергия может подогревать входящий воздух на 30–70°C в зависимости от конфигурации системы и условий эксплуатации.

Опыт эксплуатации показал, что использование систем рекуперации тепла «газ-газ» позволяет снизить потребление энергии на 151–351 тонну сушки, сократить циклы сушки и повысить общую эффективность системы. Кроме того, это способствует снижению выбросов углерода и улучшению терморегулирования, что делает систему экологичным и экономичным решением для современных процессов сушки.

international landscape of carbon trading markets

I. Overview of Major Carbon Trading Markets

1. European Union Emissions Trading System (EU ETS)

  • Launch: 2005, the world’s first and most mature carbon market.

  • Coverage: Power generation, manufacturing, aviation, and more.

  • Features: Cap-and-trade system with annually declining allowances; acts as a global price benchmark.

  • Development: Now in Phase IV (2021–2030), with tighter emission caps and expanded scope.

2. China National Carbon Market

  • Launch: Officially launched in 2021, initially covering the power sector.

  • Scope: The largest carbon market by volume of CO₂ emissions covered.

  • Mechanism: Based on allowances; draws experience from regional pilots (e.g., Beijing, Shanghai, Guangdong).

  • Future: Plans to expand to other high-emission industries such as steel and cement.

3. U.S. Regional Carbon Markets

  • No federal market, but two key regional systems exist:

    • California Cap-and-Trade Program: Linked with Quebec; highly active and comprehensive.

    • Regional Greenhouse Gas Initiative (RGGI): Covers electricity generation in northeastern U.S. states.

  • Features: Market-based, voluntary participation, robust design.

4. Other Countries and Regions

  • South Korea: Korea ETS (K-ETS) launched in 2015, steadily developing.

  • New Zealand: Operates a flexible ETS allowing international carbon credits.

  • Canada: Provinces like Quebec and Ontario run their own markets; Quebec is linked with California.


II. Types of Carbon Market Mechanisms

1. Compliance Markets

  • Government-mandated systems requiring companies to stay within emission caps or face penalties.

  • Examples: EU ETS, China’s national market, California’s system.

2. Voluntary Carbon Markets (VCM)

  • Non-mandatory participation; organizations or individuals purchase carbon credits to offset emissions.

  • Common project types: Forestry (carbon sinks), renewable energy, energy efficiency.

  • Certification bodies: Verra (VCS), Gold Standard, etc.


III. Global Trends and Integration

  1. Growing Interconnectivity Between Markets

    • Example: California and Quebec have linked carbon markets.

    • Under discussion: EU exploring potential linkage with Switzerland and others.

  2. Carbon Border Adjustment Mechanism (CBAM)

    • The EU’s proposed CBAM will tax high-carbon imports, pressuring other nations to adopt carbon pricing systems.

  3. Cross-Border Carbon Credit Flow

    • Under the Paris Agreement Article 6, a framework for international carbon credit exchange is forming, aiming to standardize and scale up global carbon trading.

  4. Integration with Nationally Determined Contributions (NDCs)

    • More countries are embedding carbon markets into their national climate strategies to meet NDC targets.


IV. Challenges and Opportunities

Challenges:

  • Diverse rules and standards hinder market linkage.

  • Voluntary markets vary in quality, and oversight is inconsistent.

  • Carbon price volatility can affect corporate planning.

Opportunities:

  • Net-zero goals drive rapid carbon market development.

  • Technological advancements (e.g., MRV systems, blockchain) enhance transparency.

  • Growing financial sector involvement; trend toward carbon market financialization.

Введение в системы рекуперации тепла промышленной вентиляции

Industrial ventilation heat recovery systems are designed to improve energy efficiency in industrial facilities by recovering waste heat from exhaust air and transferring it to incoming fresh air. These systems reduce energy consumption, lower operating costs, and contribute to environmental sustainability by minimizing heat loss.

Key Components

  1. Heat Exchanger: The core component where heat transfer occurs. Common types include:
    • Пластинчатые теплообменники: Use metal plates to transfer heat between air streams.
    • Роторные теплообменники: Use a rotating wheel to transfer heat and, in some cases, moisture.
    • Heat Pipes: Utilize sealed tubes with a working fluid for efficient heat transfer.
    • Run-Around Coils: Use a fluid loop to transfer heat between air streams.
  2. Ventilation System: Includes fans, ducts, and filters to manage airflow.
  3. Control System: Monitors and regulates temperature, airflow, and system performance to optimize efficiency.
  4. Bypass Mechanisms: Allow the system to bypass heat recovery during conditions where it’s unnecessary (e.g., summer cooling).

Принцип работы

  • Exhaust Air: Warm air from industrial processes (e.g., manufacturing, drying) is extracted.
  • Передача тепла: The heat exchanger captures thermal energy from the exhaust air and transfers it to the cooler incoming fresh air without mixing the two air streams.
  • Supply Air: The preheated fresh air is distributed into the facility, reducing the need for additional heating.
  • Energy Savings: By recovering 50-80% of waste heat (depending on the system), the demand on heating systems like boilers or furnaces is significantly reduced.

Types of Systems

  1. Air-to-Air Heat Recovery: Directly transfers heat between exhaust and supply air streams.
  2. Air-to-Water Heat Recovery: Transfers heat to a liquid medium (e.g., water) for use in heating systems or processes.
  3. Combined Systems: Integrate heat recovery with other processes, such as humidity control or cooling.

Преимущества

  • Энергоэффективность: Reduces energy consumption for heating, often by 20-50%.
  • Cost Savings: Lowers utility bills and operational costs.
  • Environmental Impact: Decreases greenhouse gas emissions by reducing reliance on fossil fuels.
  • Improved Indoor Air Quality: Ensures proper ventilation while maintaining thermal comfort.
  • Compliance: Helps meet energy efficiency and environmental regulations.

Приложения

  • Manufacturing plants (e.g., chemical, food processing, textiles)
  • Warehouses and distribution centers
  • Дата-центры
  • Pharmaceutical and cleanroom facilities
  • Commercial buildings with high ventilation demands

Challenges

  • Initial Cost: High upfront investment for installation.
  • Обслуживание: Regular cleaning of heat exchangers and filters is required to maintain efficiency.
  • System Design: Must be tailored to specific industrial processes and climates.
  • Space Requirements: Large systems may need significant installation space.

Trends and Innovations

  • Integration with IoT for real-time monitoring and optimization.
  • Advanced materials for heat exchangers to improve efficiency and durability.
  • Hybrid systems combining heat recovery with renewable energy sources (e.g., solar or geothermal).
  • Modular designs for easier installation and scalability.

Industrial ventilation heat recovery systems are a critical solution for energy-intensive industries, offering a balance of economic and environmental benefits while ensuring efficient and sustainable operations.

how does air to air heat exchanger work

An air-to-air heat exchanger transfers heat between two separate air streams without mixing them. It typically consists of a series of thin plates or tubes made of a thermally conductive material, like aluminum, arranged to maximize surface area. One airstream (e.g., warm exhaust air from a building) flows on one side, and another (e.g., cold incoming fresh air) flows on the opposite side.

Heat from the warmer airstream passes through the conductive material to the cooler airstream, warming it up. This process recovers energy that would otherwise be lost, improving efficiency in heating or cooling systems. Some designs, like cross-flow or counter-flow exchangers, optimize heat transfer by directing air in specific patterns. Effectiveness depends on factors like airflow rates, temperature difference, and exchanger design, typically recovering 50-80% of the heat.

Moisture transfer can occur in some models (e.g., enthalpy exchangers), which use special membranes to move water vapor alongside heat, useful for humidity control. The system requires fans to move air, and maintenance involves cleaning to prevent blockages or contamination.

Нужна помощь?
ru_RUРусский