ਲੇਖਕ ਪੁਰਾਲੇਖ shaohai

ਚੀਨ ਵਿੱਚ ਹੀਟ ਪੰਪ ਤਾਜ਼ੀ ਹਵਾ ਵੈਂਟੀਲੇਟਰ ਸਿਸਟਮ

A heat pump fresh air ventilator system combines ventilation and energy recovery, using a heat pump to manage the temperature of incoming fresh air while simultaneously removing stale air from a space. This type of system is especially energy-efficient, as it not only improves indoor air quality but also recycles the thermal energy from the exhaust air.

Here’s how it typically works:

  1. Fresh Air Intake: The system draws in fresh air from the outside.
  2. Heat Pump Operation: The heat pump extracts heat from the exhaust air (or vice versa depending on the season) and transfers it to the incoming fresh air. In the winter, it can warm up the cold outside air; in the summer, it can cool the incoming air.
  3. Ventilation: As the system works, it also ventilates the space by removing stale, polluted air, maintaining a constant flow of fresh air without wasting energy.

The benefits include:

  • Energy Efficiency: The heat pump reduces the need for additional heating or cooling, saving on energy costs.
  • Improved Air Quality: Constantly introducing fresh air helps remove indoor pollutants, ensuring better air quality.
  • Temperature Control: It can help maintain comfortable indoor temperatures year-round, whether heating or cooling is needed.

These systems are commonly used in energy-efficient buildings, homes, and commercial spaces where both air quality and energy savings are priorities.

Radiators for Sodium-Ion Battery Energy Storage Containers

Radiators for sodium-ion battery energy storage containers are critical for thermal management, ensuring battery performance, safety, and longevity. Sodium-ion batteries generate heat during operation, particularly in high-power or rapid charge-discharge cycles, requiring efficient cooling systems tailored to containerized storage setups. Below is a concise overview, reduced by 50% from the previous response and avoiding citations, focusing on radiators for sodium-ion battery applications.


Role of Radiators

  • Thermal Regulation: Maintain optimal battery temperatures (-20°C to 60°C) to prevent overheating or thermal runaway.
  • Lifespan Extension: Stable temperatures reduce material degradation, enhancing battery life.
  • Efficiency Boost: Consistent temperatures improve charge-discharge efficiency.

Key Features

  • Wide Temperature Range: Supports sodium-ion batteries’ ability to operate from -30°C to 60°C, reducing complex cooling needs.
  • Safety Focus: Lowers risk of thermal issues, leveraging sodium-ion’s inherent stability.
  • Cost-Effective: Uses affordable materials (e.g., aluminum) to align with sodium-ion’s low-cost advantage.
  • Modular Design: Fits containerized systems for easy scaling and maintenance.


Applications

  • Grid Storage: Large containers for renewable energy integration.
  • Electric Vehicles: Compact cooling for battery packs.
  • Industrial Backup: Reliable cooling for data centers or factories.


Challenges

  • Lower Energy Density: Larger battery volumes require expansive radiator coverage.
  • Cost Balance: Must remain economical to match sodium-ion’s affordability.
  • Environmental Durability: Needs resistance to corrosion in harsh climates.


Future Directions

  • Advanced Materials: Explore composites or graphene for better heat transfer.
  • Hybrid Systems: Combine air and liquid cooling for efficiency.
  • Smart Controls: Integrate sensors for adaptive cooling based on battery load.

temperature profile for cross flow heat exchanger

Here’s a breakdown of the temperature profile for a cross flow heat exchanger, specifically when both fluids are unmixed:


🔥 Cross Flow Heat Exchanger – Both Fluids Unmixed

➤ Flow Arrangement:

  • One fluid flows horizontally (say, hot fluid in tubes).
  • The other flows vertically (say, cold air across the tubes).
  • No mixing within or between the fluids.


📈 Temperature Profile Description:

▪ Hot Fluid:

  • Inlet temperature: High.
  • As it flows, it loses heat to the cold fluid.
  • Outlet temperature: Lower than inlet, but not uniform across the exchanger due to varying contact time.

▪ Cold Fluid:

  • Inlet temperature: Low.
  • Gains heat as it flows across the hot tubes.
  • Outlet temperature: Higher, but also varies across the exchanger.

🌀 Because of the crossflow and no mixing:

  • Each point on the exchanger sees a different temperature gradient, depending on how long each fluid has been in contact with the surface.
  • The temperature distribution is nonlinear and more complex than in counterflow or parallel flow exchangers.


📊 Typical Temperature Profile (schematic layout):

                ↑ Cold fluid in

High │ ┌──────────────┐
Temp │ │ │
│ │ │ → Hot fluid in (right side)
│ │ │
↓ └──────────────┘
Cold fluid out ← Hot fluid out

⬇ Temperature Curves:

  • Cold fluid gradually heats up — the curve starts low and arcs upward.
  • Hot fluid cools down — starts high and arcs downward.
  • The curves are not parallel, and not symmetrical due to crossflow geometry and varying heat exchange rate.


🔍 Efficiency:

  • The effectiveness depends on the heat capacity ratio and the NTU (Number of Transfer Units).
  • Generally less efficient than counterflow but more efficient than parallel flow.

cross flow heat exchanger with both fluids unmixed

A cross flow heat exchanger with both fluids unmixed refers to a type of heat exchanger where two fluids (hot and cold) flow perpendicular (at 90°) to each other, and neither fluid mixes internally or with the other. This configuration is common in applications like air-to-air heat recovery or automotive radiators.

Key Features:

  • Cross flow: The two fluids move at right angles to each other.
  • Unmixed fluids: Both the hot and cold fluids are confined to their respective flow passages by solid walls or fins, preventing any mixing.
  • Heat transfer: Occurs across the solid wall or surface separating the fluids.

Construction:

Typically includes:

Enclosed channels for the second fluid (e.g., water or refrigerant) to flow inside the tubes.

Tubes or finned surfaces where one fluid (e.g., air) flows across the tubes.

Common Applications:

  • Radiators in cars
  • Air-conditioning systems
  • Industrial HVAC systems
  • Heat recovery ventilators (HRVs)

Advantages:

  • No contamination between fluids
  • Simple maintenance and cleaning
  • Good for gases and fluids that must remain separate

a cross flow heat exchanger used in a cardiopulmonary

A cross-flow heat exchanger in a cardiopulmonary context, such as during cardiopulmonary bypass (CPB) procedures, is a critical component used to regulate a patient’s blood temperature. These devices are commonly integrated into heart-lung machines to warm or cool blood as it’s circulated outside the body during open-heart surgeries or other procedures requiring temporary heart and lung support.

How It Works

In a cross-flow heat exchanger, two fluids—typically blood and a heat transfer medium (like water)—flow perpendicular to each other, separated by a solid surface (e.g., metal or polymer plates/tubes) that facilitates heat transfer without mixing the fluids. The design maximizes heat exchange efficiency while maintaining biocompatibility and minimizing blood trauma.

  • Blood Flow Path: Oxygenated blood from the heart-lung machine flows through one set of channels or tubes.
  • Water Flow Path: Temperature-controlled water flows through an adjacent set of channels in a perpendicular direction, either warming or cooling the blood depending on the clinical need (e.g., inducing hypothermia or rewarming).
  • Heat Transfer: The temperature gradient between the blood and water drives heat exchange through the conductive surface. The cross-flow arrangement ensures a high heat transfer rate due to the constant temperature difference across the exchanger.

Key Features

  1. Biocompatibility: Materials (e.g., stainless steel, aluminum, or medical-grade polymers) are chosen to prevent clotting, hemolysis, or immune reactions.
  2. Compact Design: Cross-flow exchangers are space-efficient, crucial for integration into CPB circuits.
  3. Efficiency: The perpendicular flow maximizes the temperature gradient, improving heat transfer compared to parallel-flow designs.
  4. Sterility: The system is sealed to prevent contamination, with disposable components often used for single-patient procedures.
  5. Control: Paired with a heater-cooler unit, the exchanger maintains precise blood temperature (e.g., 28–32°C for hypothermia, 36–37°C for normothermia).

Applications in Cardiopulmonary Procedures

  • Hypothermia Induction: During CPB, the blood is cooled to reduce metabolic demand, protecting organs like the brain and heart during reduced circulation.
  • Rewarming: After surgery, the blood is gradually warmed to restore normal body temperature without causing thermal stress.
  • Temperature Regulation: Maintains stable blood temperature in extracorporeal membrane oxygenation (ECMO) or other long-term circulatory support systems.

Design Considerations

  • Surface Area: Larger surface areas improve heat transfer but must balance with minimizing priming volume (the amount of fluid needed to fill the circuit).
  • Flow Rates: Blood flow must be turbulent enough for efficient heat transfer but not so high as to damage red blood cells.
  • Pressure Drop: The design minimizes resistance to blood flow to avoid excessive pump pressure.
  • Infection Control: Stagnant water in heater-cooler units can harbor bacteria (e.g., Mycobacterium chimaera), necessitating strict maintenance protocols.

Example

A typical cross-flow heat exchanger in a CPB circuit might consist of a bundle of thin-walled tubes through which blood flows, surrounded by a water jacket where temperature-controlled water circulates in a perpendicular direction. The exchanger is connected to a heater-cooler unit that adjusts water temperature based on real-time feedback from the patient’s core temperature.

Challenges and Risks

  • Hemolysis: Excessive shear stress from turbulent flow can damage blood cells.
  • Thrombogenicity: Surface interactions may trigger clot formation, requiring anticoagulation (e.g., heparin).
  • Air Embolism: Improper priming can introduce air bubbles, a serious risk during bypass.
  • Infections: Contaminated water in heater-cooler units has been linked to rare but severe infections.

How does a counterflow heat exchanger work?

In the counterflow heat exchanger, two neighboring aluminum plates create channels for theair to pass through. The supply air passes on one side of the plate and the exhaust air onthe other. Airflows are passed by each other along parallel aluminum plates instead ofperpendicular like in a crossflow heat exchanger. The heat in the exhaust air is transferredthrough the plate from the warmer air to the colder air.
Sometimes, the exhaust air is contaminated with humidity and pollutants, but airflows nevermix with a plate heat exchanger, leaving the supply air fresh and clean.

The utilization of air-to-air heat exchangers in ventilation and energy-saving engineering

The core function of an air-to-air heat exchanger is to transfer the residual heat carried in the exhaust air (indoor exhaust air) to the fresh air (outdoor intake air) through heat exchange, without directly mixing the two airflows. The entire process is based on the principles of heat conduction and energy conservation, as follows:

Exhaust waste heat capture:
The air expelled indoors (exhaust) usually contains a high amount of heat (warm air in winter and cold air in summer), which would otherwise dissipate directly to the outside.
The exhaust air flows through one side of the heat exchanger, transferring heat to the heat conducting material of the heat exchanger.
Heat transfer:
Air to air heat exchangers are usually composed of metal plates, tube bundles, or heat pipes, which have good thermal conductivity.
Fresh air (air introduced from outside) flows through the other side of the heat exchanger, indirectly contacting the heat on the exhaust side, and absorbing heat through the wall of the heat exchanger.
In winter, fresh air is preheated; In summer, the fresh air is pre cooled (if the exhaust air is air conditioning cold air).
Energy recovery and conservation:
By preheating or pre cooling fresh air, the energy consumption of subsequent heating or cooling equipment is reduced. For example, in winter, the outdoor temperature may be 0 ° C, with an exhaust temperature of 20 ° C. After passing through a heat exchanger, the fresh air temperature may rise to 15 ° C. This way, the heating system only needs to heat the fresh air from 15 ° C to the target temperature, rather than starting from 0 ° C.
Airflow isolation:
Exhaust and fresh air flow through different channels in the heat exchanger to avoid cross contamination and ensure indoor air quality.
technological process
Exhaust collection: indoor exhaust gas is guided to the air-to-air heat exchanger through a ventilation system (such as an exhaust fan).
Fresh air introduction: Outdoor fresh air enters the other side of the heat exchanger through the fresh air duct.
Heat exchange: Inside the heat exchanger, exhaust and fresh air exchange heat in isolated channels.
Fresh air treatment: Preheated (or pre cooled) fresh air enters the air conditioning system or is directly sent into the room, and the temperature or humidity is further adjusted as needed.
Exhaust emission: After completing heat exchange, the exhaust temperature decreases and is finally discharged outdoors.
Types of air-to-air heat exchangers
Plate heat exchanger: composed of multiple layers of thin plates, with exhaust and fresh air flowing in opposite or intersecting directions in adjacent channels, resulting in high efficiency.
Wheel heat exchanger: using rotating heat wheels to absorb exhaust heat and transfer it to fresh air, suitable for high air volume systems.
Heat pipe heat exchanger: It utilizes the evaporation and condensation of the working fluid inside the heat pipe to transfer heat, and is suitable for scenarios with large temperature differences.
ਫਾਇਦਾ
Energy saving: Recovering 70% -90% of exhaust waste heat, significantly reducing heating or cooling energy consumption.
Environmental Protection: Reduce energy consumption and lower carbon emissions.
Enhance comfort: Avoid direct introduction of cold or hot fresh air and improve indoor environment.

ਮਾਈਨ ਐਗਜ਼ੌਸਟ ਹੀਟ ਐਕਸਟਰੈਕਸ਼ਨ ਬਾਕਸ ਜਿਸ ਵਿੱਚ ਬਿਲਟ-ਇਨ ਏਅਰ-ਟੂ-ਏਅਰ ਹੀਟ ਐਕਸਚੇਂਜਰ ਹੈ

ਮਾਈਨ ਐਗਜ਼ੌਸਟ ਹੀਟ ਐਕਸਟਰੈਕਸ਼ਨ ਬਾਕਸ ਵਿੱਚ ਬਿਲਟ-ਇਨ ਏਅਰ-ਟੂ-ਏਅਰ ਹੀਟ ਐਕਸਚੇਂਜਰ ਇੱਕ ਡਿਵਾਈਸ ਹੈ ਜੋ ਖਾਸ ਤੌਰ 'ਤੇ ਮਾਈਨ ਐਗਜ਼ੌਸਟ ਹਵਾ ਤੋਂ ਰਹਿੰਦ-ਖੂੰਹਦ ਦੀ ਗਰਮੀ ਨੂੰ ਮੁੜ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ ਤਿਆਰ ਕੀਤਾ ਗਿਆ ਹੈ। ਮਾਈਨ ਐਗਜ਼ੌਸਟ ਇੱਕ ਖਾਨ ਤੋਂ ਡਿਸਚਾਰਜ ਹੋਣ ਵਾਲੀ ਘੱਟ-ਤਾਪਮਾਨ, ਉੱਚ ਨਮੀ ਵਾਲੀ ਰਹਿੰਦ-ਖੂੰਹਦ ਗੈਸ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਆਮ ਤੌਰ 'ਤੇ ਇੱਕ ਨਿਸ਼ਚਿਤ ਮਾਤਰਾ ਵਿੱਚ ਗਰਮੀ ਹੁੰਦੀ ਹੈ ਪਰ ਰਵਾਇਤੀ ਤੌਰ 'ਤੇ ਵਰਤੋਂ ਕੀਤੇ ਬਿਨਾਂ ਸਿੱਧੇ ਡਿਸਚਾਰਜ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇਹ ਡਿਵਾਈਸ ਐਗਜ਼ੌਸਟ ਹਵਾ ਤੋਂ ਠੰਡੀ ਹਵਾ ਦੀ ਇੱਕ ਹੋਰ ਧਾਰਾ ਵਿੱਚ ਗਰਮੀ ਨੂੰ ਟ੍ਰਾਂਸਫਰ ਕਰਨ ਲਈ ਇੱਕ ਬਿਲਟ-ਇਨ ਏਅਰ-ਟੂ-ਏਅਰ ਹੀਟ ਐਕਸਚੇਂਜਰ (ਭਾਵ ਏਅਰ-ਟੂ-ਏਅਰ ਹੀਟ ਐਕਸਚੇਂਜਰ) ਦੀ ਵਰਤੋਂ ਕਰਦੀ ਹੈ, ਜਿਸ ਨਾਲ ਰਹਿੰਦ-ਖੂੰਹਦ ਦੀ ਗਰਮੀ ਰਿਕਵਰੀ ਦਾ ਟੀਚਾ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ।

ਕੰਮ ਕਰਨ ਦਾ ਸਿਧਾਂਤ
ਹਵਾ ਦੀ ਘਾਟ: ਖਾਨ ਵਿੱਚ ਹਵਾ ਦੀ ਘਾਟ ਨੂੰ ਹਵਾਦਾਰੀ ਪ੍ਰਣਾਲੀ ਰਾਹੀਂ ਗਰਮੀ ਕੱਢਣ ਵਾਲੇ ਡੱਬੇ ਵਿੱਚ ਦਾਖਲ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਐਗਜ਼ੌਸਟ ਹਵਾ ਦਾ ਤਾਪਮਾਨ ਆਮ ਤੌਰ 'ਤੇ ਲਗਭਗ 20 ℃ ਹੁੰਦਾ ਹੈ (ਖਾਨ ਦੀ ਡੂੰਘਾਈ ਅਤੇ ਵਾਤਾਵਰਣ ਦੇ ਆਧਾਰ 'ਤੇ ਖਾਸ ਤਾਪਮਾਨ ਵੱਖ-ਵੱਖ ਹੁੰਦਾ ਹੈ), ਅਤੇ ਨਮੀ ਮੁਕਾਬਲਤਨ ਜ਼ਿਆਦਾ ਹੁੰਦੀ ਹੈ।
ਹਵਾ ਤੋਂ ਹਵਾ ਹੀਟ ਐਕਸਚੇਂਜਰ ਦਾ ਕੰਮ: ਬਿਲਟ-ਇਨ ਹਵਾ ਤੋਂ ਹਵਾ ਹੀਟ ਐਕਸਚੇਂਜਰ ਆਮ ਤੌਰ 'ਤੇ ਇੱਕ ਪਲੇਟ ਜਾਂ ਟਿਊਬ ਬਣਤਰ ਨੂੰ ਅਪਣਾਉਂਦਾ ਹੈ, ਅਤੇ ਐਗਜ਼ੌਸਟ ਹਵਾ ਅਤੇ ਠੰਡੀ ਹਵਾ ਹੀਟ ਐਕਸਚੇਂਜਰ ਵਿੱਚ ਇੱਕ ਪਾਰਟੀਸ਼ਨ ਕਿਸਮ ਰਾਹੀਂ ਗਰਮੀ ਦਾ ਆਦਾਨ-ਪ੍ਰਦਾਨ ਕਰਦੇ ਹਨ। ਹਵਾ ਦੀ ਘਾਟ ਤੋਂ ਗਰਮੀ ਠੰਡੀ ਹਵਾ ਵਿੱਚ ਤਬਦੀਲ ਹੋ ਜਾਂਦੀ ਹੈ, ਜਦੋਂ ਕਿ ਦੋਵੇਂ ਹਵਾ ਦੇ ਪ੍ਰਵਾਹ ਸਿੱਧੇ ਨਹੀਂ ਮਿਲਦੇ।
ਗਰਮੀ ਦਾ ਉਤਪਾਦਨ: ਗਰਮੀ ਦੇ ਵਟਾਂਦਰੇ ਦੁਆਰਾ ਗਰਮ ਕੀਤੇ ਜਾਣ ਤੋਂ ਬਾਅਦ, ਠੰਡੀ ਹਵਾ ਨੂੰ ਮਾਈਨ ਏਅਰ ਇਨਲੇਟ ਦੇ ਫ੍ਰੀਜ਼ਿੰਗ ਵਿਰੋਧੀ, ਮਾਈਨਿੰਗ ਖੇਤਰ ਦੀਆਂ ਇਮਾਰਤਾਂ ਨੂੰ ਗਰਮ ਕਰਨ, ਜਾਂ ਘਰੇਲੂ ਗਰਮ ਪਾਣੀ ਲਈ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਨਿਕਾਸ ਵਾਲੀ ਹਵਾ ਗਰਮੀ ਛੱਡਣ ਤੋਂ ਬਾਅਦ ਘੱਟ ਤਾਪਮਾਨ 'ਤੇ ਛੱਡੀ ਜਾਂਦੀ ਹੈ।
ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਅਤੇ ਫਾਇਦੇ
ਕੁਸ਼ਲ ਅਤੇ ਊਰਜਾ-ਬਚਤ: ਹਵਾ ਤੋਂ ਹਵਾ ਹੀਟ ਐਕਸਚੇਂਜਰਾਂ ਨੂੰ ਵਾਧੂ ਕੰਮ ਕਰਨ ਵਾਲੇ ਤਰਲਾਂ ਦੀ ਲੋੜ ਨਹੀਂ ਹੁੰਦੀ ਹੈ ਅਤੇ ਉਹ ਹਵਾ ਤੋਂ ਹਵਾ ਵਿੱਚ ਗਰਮੀ ਦੇ ਤਬਾਦਲੇ ਦੀ ਸਿੱਧੀ ਵਰਤੋਂ ਕਰਦੇ ਹਨ। ਉਹਨਾਂ ਦੀ ਇੱਕ ਸਧਾਰਨ ਬਣਤਰ ਅਤੇ ਘੱਟ ਸੰਚਾਲਨ ਲਾਗਤ ਹੁੰਦੀ ਹੈ।
ਵਾਤਾਵਰਣ ਮਿੱਤਰਤਾ: ਐਗਜ਼ੌਸਟ ਗਰਮੀ ਨੂੰ ਰੀਸਾਈਕਲ ਕਰਕੇ ਅਤੇ ਊਰਜਾ ਦੀ ਰਹਿੰਦ-ਖੂੰਹਦ ਨੂੰ ਘਟਾ ਕੇ, ਇਹ ਹਰੇ ਅਤੇ ਘੱਟ-ਕਾਰਬਨ ਵਿਕਾਸ ਦੀਆਂ ਜ਼ਰੂਰਤਾਂ ਨੂੰ ਪੂਰਾ ਕਰਦਾ ਹੈ।
ਮਜ਼ਬੂਤ ਅਨੁਕੂਲਤਾ: ਉਪਕਰਣਾਂ ਨੂੰ ਖਾਣ ਦੇ ਨਿਕਾਸ ਦੀ ਪ੍ਰਵਾਹ ਦਰ ਅਤੇ ਤਾਪਮਾਨ ਦੇ ਅਨੁਸਾਰ ਅਨੁਕੂਲਿਤ ਅਤੇ ਡਿਜ਼ਾਈਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ ਕਿ ਵੱਖ-ਵੱਖ ਪੈਮਾਨਿਆਂ ਦੀਆਂ ਖਾਣਾਂ ਲਈ ਢੁਕਵਾਂ ਹੈ।
ਆਸਾਨ ਰੱਖ-ਰਖਾਅ: ਹੀਟ ਪਾਈਪ ਜਾਂ ਹੀਟ ਪੰਪ ਪ੍ਰਣਾਲੀਆਂ ਦੇ ਮੁਕਾਬਲੇ, ਹਵਾ-ਤੋਂ-ਹਵਾ ਹੀਟ ਐਕਸਚੇਂਜਰਾਂ ਦੀ ਬਣਤਰ ਮੁਕਾਬਲਤਨ ਸਧਾਰਨ ਹੁੰਦੀ ਹੈ ਅਤੇ ਇਹਨਾਂ ਨੂੰ ਘੱਟ ਰੱਖ-ਰਖਾਅ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।
ਐਪਲੀਕੇਸ਼ਨ ਦ੍ਰਿਸ਼
ਖੂਹ ਦੇ ਸਿਰੇ 'ਤੇ ਠੰਢ ਰੋਕੂ: ਮਾਈਨ ਏਅਰ ਇਨਟੇਕ ਨੂੰ ਗਰਮ ਕਰਨ ਲਈ ਮੁੜ ਪ੍ਰਾਪਤ ਹੋਈ ਗਰਮੀ ਦੀ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਰਦੀਆਂ ਵਿੱਚ ਠੰਢ ਤੋਂ ਬਚੋ।
ਇਮਾਰਤਾਂ ਦੀ ਹੀਟਿੰਗ: ਮਾਈਨਿੰਗ ਖੇਤਰ ਵਿੱਚ ਦਫ਼ਤਰੀ ਇਮਾਰਤਾਂ, ਡਾਰਮਿਟਰੀਆਂ, ਆਦਿ ਲਈ ਹੀਟਿੰਗ ਪ੍ਰਦਾਨ ਕਰਨਾ।
ਗਰਮ ਪਾਣੀ ਦੀ ਸਪਲਾਈ: ਬਾਅਦ ਵਾਲੇ ਸਿਸਟਮ ਨਾਲ ਮਿਲ ਕੇ, ਮਾਈਨਿੰਗ ਖੇਤਰ ਵਿੱਚ ਘਰੇਲੂ ਗਰਮ ਪਾਣੀ ਲਈ ਇੱਕ ਗਰਮੀ ਸਰੋਤ ਪ੍ਰਦਾਨ ਕਰੋ।
ਸਾਵਧਾਨੀਆਂ
ਨਮੀ ਦਾ ਇਲਾਜ: ਐਗਜ਼ੌਸਟ ਹਵਾ ਦੀ ਉੱਚ ਨਮੀ ਦੇ ਕਾਰਨ, ਹੀਟ ਐਕਸਚੇਂਜਰ ਨੂੰ ਸੰਘਣਾ ਪਾਣੀ ਇਕੱਠਾ ਹੋਣ ਦੀ ਸਮੱਸਿਆ ਦਾ ਸਾਹਮਣਾ ਕਰਨਾ ਪੈ ਸਕਦਾ ਹੈ, ਅਤੇ ਇੱਕ ਡਰੇਨੇਜ ਸਿਸਟਮ ਜਾਂ ਖੋਰ-ਰੋਧੀ ਸਮੱਗਰੀ ਡਿਜ਼ਾਈਨ ਕਰਨ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ।
ਗਰਮੀ ਟ੍ਰਾਂਸਫਰ ਕੁਸ਼ਲਤਾ: ਹਵਾ-ਤੋਂ-ਹਵਾ ਹੀਟ ਐਕਸਚੇਂਜਰ ਦੀ ਕੁਸ਼ਲਤਾ ਹਵਾ ਦੀ ਖਾਸ ਗਰਮੀ ਸਮਰੱਥਾ ਅਤੇ ਤਾਪਮਾਨ ਦੇ ਅੰਤਰ ਦੁਆਰਾ ਸੀਮਿਤ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਪ੍ਰਾਪਤ ਕੀਤੀ ਗਰਮੀ ਇੱਕ ਗਰਮੀ ਪੰਪ ਪ੍ਰਣਾਲੀ ਜਿੰਨੀ ਜ਼ਿਆਦਾ ਨਹੀਂ ਹੋ ਸਕਦੀ, ਪਰ ਇਸਦਾ ਫਾਇਦਾ ਇਸਦੀ ਸਧਾਰਨ ਬਣਤਰ ਵਿੱਚ ਹੈ।

Rotary heat exchanger manufacturers

There are several well-known rotary heat exchanger manufacturers that provide high-efficiency solutions for HVAC, industrial, and energy recovery applications. Below are some leading companies:

1. Global Rotary Heat Exchanger Manufacturers

Heatex (Sweden) – Specializes in air-to-air rotary and plate heat exchangers for HVAC and industrial applications.
Klingenburg GmbH (Germany) – Offers rotary heat exchangers with advanced coatings for high humidity and corrosive environments.
Seibu Giken (Japan) – Known for its desiccant rotors and energy recovery wheels, ideal for pharmaceutical and cleanroom applications.
FläktGroup (Germany) – Supplies energy-efficient rotary heat exchangers for large commercial and industrial buildings.
REC Air Handling (Netherlands) – Provides customizable rotary heat exchangers for HVAC and industrial heat recovery.

2. China-Based Rotary Heat Exchanger Manufacturers

Hoval – Specializes in plate and rotary heat exchangers for HVAC and industrial processes.
Holtop – Manufactures energy recovery ventilation (ERV) systems with rotary heat exchangers.
Zibo Qiyu – Offers aluminum-based rotary heat exchangers for air handling systems.
Shanghai Shenglin – Produces rotary wheels for air-to-air heat recovery applications.

3. Key Features to Consider

Material – Aluminum, coated surfaces (for corrosion resistance), or desiccant-coated wheels (for humidity control).
Efficiency – High heat recovery efficiency (up to 85%) for energy savings.
Application – Industrial HVAC, cleanrooms, pharmaceutical, or general ventilation.
Customization – Size, coatings, and integration with existing systems.

ਭੱਠੇ ਦੀ ਰਹਿੰਦ-ਖੂੰਹਦ ਦੀ ਗਰਮੀ ਦੀ ਰਿਕਵਰੀ ਅਤੇ ਮੁੜ ਵਰਤੋਂ ਪ੍ਰਣਾਲੀ - ਗੈਸ ਸਟੇਨਲੈਸ ਸਟੀਲ ਕਰਾਸ ਫਲੋ ਹੀਟ ਐਕਸਚੇਂਜਰ ਸਕੀਮ

The kiln waste heat recovery and reuse system aims to fully utilize the high-temperature heat in the kiln exhaust gas, and achieve a win-win situation of energy conservation and environmental protection through gas stainless steel cross flow heat exchangers. The core of this solution lies in the use of a stainless steel cross flow heat exchanger, which efficiently exchanges heat between high-temperature exhaust gas and cold air, generating hot air that can be reused.

Working principle: The exhaust gas and cold air flow in a cross flow manner inside the heat exchanger and transfer heat through the stainless steel plate wall. After releasing heat from exhaust gas, it is discharged. Cold air absorbs the heat and heats up into hot air, which is suitable for scenarios such as assisting combustion, preheating materials, or heating.

Advantages:

Efficient heat transfer: The cross flow design ensures a heat transfer efficiency of 60% -80%.
Strong durability: Stainless steel material is resistant to high temperatures and corrosion, and can adapt to complex exhaust environments.
Flexible application: Hot air can be directly fed back to the kiln or used for other processes, with significant energy savings.
System process: Kiln exhaust gas → Pre treatment (such as dust removal) → Stainless steel heat exchanger → Hot air output → Secondary utilization.

This solution is simple and reliable, with a short investment return cycle, making it an ideal choice for kiln waste heat recovery, helping enterprises reduce energy consumption and improve efficiency.

ਮਦਦ ਦੀ ਲੋੜ ਹੈ?
pa_INਪੰਜਾਬੀ