카테고리 아카이브 제품

왜 역류가 평행류보다 효율적인가요?

열교환기에서 역류(counterflow)는 평행류보다 효율적입니다. 역류는 교환기 전체에서 두 유체 사이의 온도 차이(ΔT)를 더 크고 일정하게 유지하여 열전달을 극대화하기 때문입니다. 자세한 설명은 다음과 같습니다.

1. 온도 구배 및 열 전달

  • 역류:
    • 역류에서는 유체가 반대 방향으로 흐릅니다(예: 뜨거운 유체가 한쪽 끝으로 들어오고 차가운 유체가 반대쪽 끝으로 들어옴). 이로 인해 열교환기 전체 길이에 걸쳐 거의 일정한 온도 차이(ΔT)가 발생합니다.
    • 뜨거운 유체의 최고 온도(입구)는 차가운 유체의 출구와 만나고, 차가운 유체의 최저 온도(입구)는 뜨거운 유체의 출구와 만납니다. 이를 통해 차가운 유체가 뜨거운 유체의 입구 온도에 가까워져 열전달이 극대화됩니다.
    • 예: 뜨거운 유체가 100°C에서 들어와 40°C에서 나가고, 차가운 유체가 20°C에서 들어와 90°C에 가까운 온도에서 나가면 높은 열전달률을 얻을 수 있습니다.
  • 평행 흐름:
    • 병렬 흐름에서는 두 유체가 같은 방향으로 흐르므로 가장 큰 ΔT는 입구에서 발생하지만, 두 유체가 교환기를 따라 비슷한 온도에 접근함에 따라 ΔT는 빠르게 감소합니다.
    • 차가운 유체의 출구 온도는 뜨거운 유체의 출구 온도를 초과할 수 없으므로 전달되는 총 열이 제한됩니다.
    • 예: 뜨거운 유체가 100°C에서 들어와 60°C에서 나오면 20°C에서 들어오는 차가운 유체는 ~50°C에 도달할 뿐이어서 열전달이 감소합니다.

왜 중요한가: 열전달률(Q)은 ΔT에 비례합니다(Q = U × A × ΔT, 여기서 U는 열전달 계수이고 A는 표면적입니다). 대향류는 ΔT가 더 크고 일정하기 때문에 평균 열전달률이 더 높아 효율이 더 높습니다.

2. 로그 평균 온도 차이(LMTD)

  • 열교환기의 효율성은 종종 LMTD(대수 평균 온도 차이)를 사용하여 정량화되는데, LMTD는 열 전달을 주도하는 평균 온도 차이를 나타냅니다.
  • 역류: 열교환기 전체에 걸쳐 온도 차이가 비교적 일정하게 유지되므로 LMTD가 더 높습니다. 이를 통해 동일한 표면적에서 더 많은 열이 전달될 수 있습니다.
  • 평행 흐름: 출구 쪽으로 갈수록 온도 차이가 크게 줄어들어 LMTD가 낮아지고 열전달의 구동력이 감소합니다.
  • 결과: 동일한 열교환기 크기의 경우, 역류 방식은 LMTD가 더 높아 더 많은 열을 전달하거나 동일한 열전달을 달성하는 데 필요한 표면적이 더 작아서 더 컴팩트하고 효율적입니다.

3. 최대 열 회수

  • 역류 방식에서는 차가운 유체가 이론적으로 뜨거운 유체의 유입 온도(무한히 긴 교환기)에 도달하여 거의 완전한 열 회수가 가능합니다(예: Holtop의 3D 교차 역류 교환기와 같은 최신 설계에서는 효율이 90–95%임).
  • 병렬 흐름에서는 차가운 유체의 출구 온도가 뜨거운 유체의 출구 온도에 의해 제한되어 효율이 제한됩니다(일반적으로 60–80%). 따라서 역류는 에너지 회수 환기(ERV)나 최대 열 회수가 중요한 산업 공정과 같은 분야에 이상적입니다.

4. 실제적 의미

  • 역류: 일관된 ΔT는 필요한 열 전달 면적을 줄여 고성능 애플리케이션을 위한 더 작고 비용 효율적인 설계를 가능하게 합니다. HVAC, 산업용 냉각 및 에너지 회수 시스템에 널리 사용됩니다.
  • 평행 흐름: ΔT의 급격한 감소는 동등한 열전달을 달성하기 위해 더 넓은 열전달 면적을 필요로 하며, 이로 인해 재료 및 공간 요구 사항이 증가합니다. 이 방식은 기본 라디에이터나 교육용 장치처럼 효율이 덜 중요한 단순 응용 분야에 사용됩니다.

시각적 설명(간단하게)

  • 역류: 뜨거운 유체(100°C~40°C)와 차가운 유체(20°C~90°C)를 상상해 보세요. 열교환기 전체의 온도 차이는 비교적 높게 유지됩니다(예: ~20~60°C). 이로 인해 효율적인 열전달이 이루어집니다.
  • 평행 흐름: 동일한 유체가 큰 ΔT(100°C – 20°C = 80°C)로 시작하지만 빠르게 수렴합니다(예: 60°C – 50°C = 10°C). 이로 인해 구동력이 감소하고 효율성이 제한됩니다.

결론

역류는 열교환기를 따라 더 크고 일관된 온도 차이(ΔT)를 유지하여 더 높은 LMTD(저온저항체)와 동일 표면적에서 더 큰 열전달을 초래하기 때문에 더 효율적입니다. 따라서 에너지 회수 또는 산업 공정과 같이 고효율이 요구되는 분야에 선호되는 반면, 병렬 흐름은 더 간단하지만 효율이 낮아 덜 까다로운 분야에 적합합니다.

역류 열교환기 대 병렬 흐름 열교환기

역류 및 평행류 열교환기는 두 유체 간 열전달을 위한 두 가지 주요 구성으로, 유체 흐름 방향과 효율, 온도 프로파일 및 응용 분야에 미치는 영향이 서로 다릅니다. 아래는 설계, 성능 및 사용 사례를 기반으로 한 간략한 비교입니다.

1. 흐름 구성

  • 역류 열교환기:
    • 유체는 반대 방향으로 흐릅니다(예: 뜨거운 유체는 한쪽 끝으로 들어오고 차가운 유체는 반대쪽 끝으로 들어옵니다).
    • 예: 뜨거운 유체는 왼쪽에서 오른쪽으로 흐르고, 차가운 유체는 오른쪽에서 왼쪽으로 흐릅니다.
  • 병렬 흐름 열교환기:
    • 유체는 같은 방향으로 흐릅니다(예: 뜨거운 유체와 차가운 유체가 같은 끝에서 들어와 반대쪽 끝에서 나갑니다).
    • 예: 두 유체는 모두 왼쪽에서 오른쪽으로 흐릅니다.

2. 열전달 효율

  • 역류:
    • 더 높은 효율성: 열교환기 전체 길이에 걸쳐 더 큰 온도 차이(ΔT)를 유지하여 단위 면적당 열전달을 극대화합니다.
    • 잘 설계된 시스템(예: 판형 또는 관형 교환기)에서는 최대 90–95%의 열 효율을 달성할 수 있습니다.
    • 차가운 유체의 출구 온도는 뜨거운 유체의 입구 온도에 근접할 수 있으므로 최대 열 회수가 필요한 응용 분야에 이상적입니다.
  • 평행 흐름:
    • 효율성이 낮음: 온도 차이(ΔT)는 입구에서 가장 크지만 두 유체가 교환기를 따라 열 평형에 접근함에 따라 빠르게 감소합니다.
    • 일반적으로 60–80% 효율을 달성하는데, 이는 차가운 유체의 출구 온도가 뜨거운 유체의 출구 온도를 초과할 수 없기 때문입니다.
    • 거의 완전한 열전달이 필요한 응용 분야에서는 효과가 떨어집니다.

3. 온도 프로파일

  • 역류:
    • 온도 기울기는 더 균일하며, 교환기 전체에 걸쳐 ΔT가 거의 일정합니다.
    • 더 가까운 접근 온도(뜨거운 유체의 출구 온도와 차가운 유체의 입구 온도 차이)가 가능합니다.
    • 예: 뜨거운 유체는 100°C에서 들어와 40°C에서 나옵니다. 차가운 유체는 20°C에서 들어와 90°C에 가까운 온도에서 나올 수 있습니다.
  • 평행 흐름:
    • 입구에서는 온도 차이가 크지만 교환기를 따라가면서 감소하여 유체의 온도가 비슷해지면서 열전달이 제한됩니다.
    • 예: 뜨거운 유체는 100°C에서 들어와 60°C에서 나옵니다. 차가운 유체는 20°C에서 들어와 50°C까지만 올라갈 수 있습니다.

4. 디자인과 복잡성

  • 역류:
    • 유체가 반대 방향으로 흐르도록 하려면 더 복잡한 배관이나 판 배열이 필요하므로 제조 비용이 증가할 가능성이 있습니다.
    • 더 높은 효율성으로 인해 컴팩트한 설계가 가능하며, 동일한 열전달률을 위해 필요한 재료도 줄어듭니다.
  • 평행 흐름:
    • 두 유체가 같은 끝에서 들어오고 나가므로 설계가 간단해지고 배관의 복잡성이 줄어듭니다.
    • 비슷한 열전달을 달성하려면 더 큰 열전달 영역(더 길거나 더 큰 열교환기)이 필요할 수 있으며, 이로 인해 크기와 재료 비용이 증가합니다.

5. 응용 프로그램

  • 역류:
    • 다음과 같이 높은 효율성과 최대 열 회수가 필요한 응용 분야에 적합합니다.
      • HVAC 시스템(예: 에너지 회수 환기 장치).
      • 산업 공정(예: 화학 공장, 발전).
      • 폐수 열 회수(예: 샤워 열교환기).
      • 정확한 온도 제어가 중요한 극저온 시스템.
    • 플레이트 열교환기, 이중 파이프 열교환기, 고성능 쉘 앤 튜브 설계에 일반적입니다.
  • 평행 흐름:
    • 단순성이 우선시되거나 완전한 열 전달이 중요하지 않은 다음과 같은 응용 분야에서 사용됩니다.
      • 소규모 냉각 시스템(예: 자동차 라디에이터).
      • 유체가 특정 온도를 초과해서는 안 되는 공정(예: 차가운 유체가 과열되는 것을 방지하기 위해).
      • 구조가 간단하여 교육적 또는 실험적 목적으로 적합합니다.
    • 기본적인 튜브-인-튜브 또는 쉘-앤-튜브 열교환기에 일반적입니다.

6. 장점과 단점

  • 역류:
    • 장점:
      • 열 효율이 높아져 에너지 손실이 줄어듭니다.
      • 동일한 열전달 용량에 비해 크기가 더 작습니다.
      • 온도 차이가 큰 응용 분야에 더 적합합니다.
    • 단점:
      • 설계와 배관이 더 복잡해져서 비용이 증가할 가능성이 있습니다.
      • 추운 환경에서는 결로나 서리를 관리하기 위한 추가 조치가 필요할 수 있습니다.
  • 평행 흐름:
    • 장점:
      • 디자인이 더 간단하고, 제조와 유지관리가 더 쉽습니다.
      • 어떤 경우에는 압력 강하가 낮아져 펌핑 비용이 절감됩니다.
    • 단점:
      • 효율성이 낮아 더 넓은 열전달 면적이 필요합니다.
      • 출구 온도 제약에 의해 제한됨(차가운 유체는 뜨거운 유체의 출구 온도를 초과할 수 없음).

7. 실제 고려 사항

  • 역류:
    • 에너지 회수 시스템(예: 95% 효율을 갖춘 Holtop의 3D 교차 역류 교환기 또는 RECUTECH의 RFK+ 엔탈피 교환기)에 이상적입니다.
    • 응축을 관리하기 위한 친수성 코팅과 같은 기능이 장착된 경우가 많습니다(예: Eri Corporation의 알루미늄 판형 교환기).
  • 평행 흐름:
    • 기본적인 HVAC 시스템이나 소규모 산업용 냉각 시스템과 같이 비용과 단순성이 효율성 요구 사항보다 중요한 응용 분야에 사용됩니다.
    • 성능 제한으로 인해 현대의 고효율 설계에서는 덜 일반적입니다.

요약표

패널 룸에 간접 증발 냉각 장치 적용

간접 증발 냉각(IEC) 장치는 점점 더 많이 사용되고 있습니다. 전기 패널실, 통제실, 그리고 장비 인클로저 추가적인 습도를 유발하지 않으면서 에너지 효율적인 냉방을 제공합니다. 이러한 방에는 일반적으로 작동 중 열을 발생시키는 민감한 전기 및 전자 장비가 보관되어 있으며, 안정적인 작동을 위해서는 제어된 온도 환경이 필요합니다.

Application of Cross Flow Heat Exchanger in Indirect Evaporative Cooling System of Data Center

패널 룸에 간접 증발 냉각 장치 적용

작동 원리

간접 증발 냉각 장치는 패널 룸 내부에서 물과 공기가 직접 접촉하지 않고 공기를 냉각합니다. 대신 열교환 기 실내의 따뜻한 공기에서 증발로 냉각되는 2차 기류로 열을 전달합니다. 이 과정은 다음을 보장합니다.

  • 습기 없음 패널 룸에 들어간다.

  • 그만큼 내부 공기는 깨끗하고 건조하게 유지됩니다.

  • 에너지 소비가 훨씬 낮습니다 전통적인 기계적 냉장보다.

패널 룸 애플리케이션의 이점

  1. 습기 없는 냉각:
    물과 직접 접촉하지 않으므로 민감한 전자 부품은 응축 및 부식 위험으로부터 안전합니다.

  2. 에너지 효율:
    IEC 장치는 기존의 에어컨 시스템에 비해 전력 소모가 적어 산업 현장에서 연속 작동에 이상적입니다.

  3. 유지 보수 감소:
    기계적 구성 요소가 적고 냉장 사이클이 없기 때문에 시스템 유지 관리가 간단하고 작동 수명이 더 깁니다.

  4. 향상된 신뢰성:
    안정적이고 시원한 환경을 유지하면 제어판의 수명을 연장하고 과열로 인한 장비 고장 위험을 줄이는 데 도움이 됩니다.

  5. 환경 친화적:
    냉매를 사용하지 않아 시스템의 환경 영향을 줄였습니다.

일반적인 응용 프로그램

  • 공장의 전기 패널실

  • 서버 및 네트워크 제어 캐비닛

  • 인버터 또는 PLC(프로그래밍 가능 논리 컨트롤러) 룸

  • 야외 통신 인클로저

  • 변전소 제어실

산업용 열 회수 상자, 폐가스 및 열 회수, 가스-가스 열교환기

산업용 열 회수 장치는 다양한 산업 분야에서 폐가스 흐름으로부터 열을 회수하도록 설계된 작고 효율적인 시스템입니다. 가스-가스 열교환기를 사용하여 두 기류를 혼합하지 않고 고온의 배기 가스에서 유입되는 신선한 공기로 열에너지를 전달합니다. 이 공정은 추가 가열 필요성을 줄여 에너지 효율을 크게 향상시키고, 운영 비용과 환경 영향을 줄입니다.

알루미늄이나 스테인리스 스틸과 같은 내구성 있는 소재로 제작된 이 시스템은 고온 및 부식성 환경을 견딜 수 있습니다. 내부 열교환기는 주로 알루미늄 호일이나 판으로 제작되어 높은 열전도도와 효율적인 열 전달을 보장합니다. 이러한 설계는 오염된 배기 공기와 깨끗한 공급 공기 간의 교차 오염을 방지하여 식품 가공, 담배, 인쇄, 화학, 슬러지 처리 등의 산업에 적합합니다.

이 에너지 절약 솔루션은 폐열을 회수할 뿐만 아니라 실내 공기질을 개선하고 안정적인 생산 환경을 유지하는 데에도 도움을 줍니다. 설치 및 유지 보수가 간편한 산업용 열 회수 박스는 지속 가능성을 높이고 에너지 절약 규정을 준수하려는 공장에 현명한 선택입니다.

Industrial heat recovery box, waste gas and heat recovery, gas to gas heat exchanger

산업용 열 회수 상자, 폐가스 및 열 회수, 가스-가스 열교환기

교차 흐름 열교환기는 어떻게 작동합니까?

에이 교차 흐름 열교환기 두 유체가 서로 직각(수직)으로 흐르도록 하여 작동하며, 일반적으로 한 유체는 튜브를 통해 흐르고 다른 유체는 튜브 바깥쪽을 따라 흐릅니다. 핵심 원리는 열이 튜브 벽을 통해 한 유체에서 다른 유체로 전달된다는 것입니다. 작동 원리를 단계별로 설명하면 다음과 같습니다.

구성 요소:

  1. 튜브 사이드: 유체 중 하나가 튜브를 통해 흐릅니다.
  2. 쉘 사이드: 다른 유체는 튜브 번들을 가로질러 튜브 내부 유체의 흐름에 수직인 방향으로 흐릅니다.

작업 과정:

  1. 유체 유입구: 두 유체(뜨거운 유체와 차가운 유체) 모두 서로 다른 입구를 통해 열교환기로 들어갑니다. 한 유체(뜨거운 유체)는 관을 통해 들어가고, 다른 유체(차가운 유체)는 관 바깥 공간으로 들어갑니다.
  2. 유체 흐름:

    • 튜브 내부를 흐르는 유체는 직선 경로나 약간 꼬인 경로로 움직입니다.
    • 튜브 외부로 흐르는 유체는 튜브를 수직 방향으로 가로지릅니다. 이 유체의 경로는 교차류(튜브를 직접 가로지르는 흐름)일 수도 있고, 교차류와 역류가 혼합된 형태처럼 더 복잡한 형태를 가질 수도 있습니다.

  3. 열전달:

    • 뜨거운 유체의 열은 튜브 벽으로 전달되고, 그 후 튜브를 가로질러 흐르는 차가운 유체로 전달됩니다.
    • 열전달 효율은 두 유체 사이의 온도차에 따라 달라집니다. 온도차가 클수록 열전달 효율이 높아집니다.

  4. 콘센트: 열 전달 후, 차가워진 뜨거운 유체는 한 쪽 출구로 나가고, 따뜻해진 차가운 유체는 다른 쪽 출구로 나갑니다. 이 열교환 과정은 두 유체가 열교환기를 통과할 때 온도 변화를 초래합니다.

디자인 변형:

  • 단일 패스 크로스플로우: 한 유체는 튜브를 가로질러 한 방향으로 흐르고, 다른 유체는 튜브를 통해 이동합니다.
  • 멀티패스 크로스플로우: 튜브 내부의 유체는 여러 번 흐르면서 외부 유체와의 접촉 시간을 늘리고 열 전달을 개선할 수 있습니다.

효율성 고려 사항:

  • 직교류 열교환기는 일반적으로 역류 열교환기보다 효율이 낮습니다. 두 유체 사이의 온도 구배가 열교환기 길이 방향으로 감소하기 때문입니다. 역류 열교환기에서는 유체의 온도 차이가 더 일정하게 유지되어 열전달 효율이 더 높습니다.
  • 그러나 교차 흐름 열교환기는 설계가 더 쉽고 공간이 제한적이거나 유체를 분리해야 하는 상황(예: 공기 대 공기 열교환기)에서 자주 사용됩니다.

응용 프로그램:

  • 공랭식 열교환기 (HVAC 시스템이나 자동차 라디에이터와 같은)
  • 전자 장비의 냉각.
  • 환기 시스템용 열교환기.

따라서 역류 열교환기만큼 열 효율이 좋지는 않지만, 횡류 설계는 다용도로 활용 가능하며 단순성이나 공간 절약이 중요할 때 일반적으로 사용됩니다.

교차 흐름 열교환기의 온도 프로파일

다음은 이에 대한 세부 사항입니다. 온도 프로파일 ~을 위해 교차 흐름 열교환기, 특히 언제 두 유체는 섞이지 않습니다:


🔥 교차 흐름 열교환기 - 두 유체가 섞이지 않음

➤ 흐름 배열:

  • 한 유체는 수평으로 흐릅니다(예를 들어, 튜브 속의 뜨거운 유체).
  • 다른 하나는 수직으로 흐릅니다(예를 들어, 튜브를 가로지르는 차가운 공기).
  • 유체 내부나 유체 간에 혼합이 없습니다.


📈 온도 프로필 설명:

▪ 뜨거운 유체:

  • 입구 온도: 높은.
  • 흐르듯이, 열을 잃다 차가운 액체에.
  • 출구 온도: 입구보다 낮지만 접촉 시간이 다양하기 때문에 교환기 전체에 걸쳐 균일하지 않습니다.

▪ 차가운 유체:

  • 입구 온도: 낮은.
  • 뜨거운 관을 흐르면서 열을 얻습니다.
  • 출구 온도: 더 높지만, 교환기마다 다릅니다.

🌀 교차 흐름과 혼합이 없기 때문에:

  • 교환기의 각 지점은 다음을 봅니다. 다른 온도 구배각 유체가 표면과 접촉한 시간에 따라 달라집니다.
  • 온도 분포는 비선형 역류나 병렬류 교환기보다 더 복잡합니다.


📊 일반적인 온도 프로필(도식적 레이아웃):

                ↑ 차가운 유체가 들어옴

높음 │ ┌──────────────┐
온도 │ │ │
│ │ │ → (오른쪽)에 뜨거운 유체가 들어옴
│ │ │
↓ └──────────────┘
차가운 유체가 나옵니다 ← 뜨거운 유체가 나옵니다

⬇ 온도 곡선:

  • 차가운 액체 점차 뜨거워집니다. 곡선은 낮은 곳에서 시작하여 위쪽으로 올라갑니다.
  • 뜨거운 유체 식어감 — 높은 곳에서 시작해서 아래로 휘어짐.
  • 곡선은 평행하지 않다, 그리고 대칭적이지 않다 교차 흐름의 형태와 다양한 열교환율로 인해.


🔍 효율성:

  • 효과는 다음에 따라 달라집니다. 열용량 비율 그리고 NTU(이송 단위 수).
  • 일반적으로 덜 효율적 역류보다 더 효율적이다 평행 흐름보다.

두 유체가 혼합되지 않은 교차 흐름 열교환기

에이 두 유체가 혼합되지 않은 교차 흐름 열교환기 두 유체(뜨겁고 차가운 유체)가 서로 수직(90°)으로 흐르는 열교환기 유형을 말합니다. 두 유체 모두 내부적으로 또는 다른 유체와 섞이지 않습니다.. 이 구성은 다음과 같은 응용 프로그램에서 일반적입니다. 공기 대 공기 열 회수 또는 자동차 라디에이터.

주요 특징:

  • 교차 흐름: 두 유체는 서로 직각으로 움직입니다.
  • 혼합되지 않은 유체: 뜨겁거나 차가운 유체는 모두 단단한 벽이나 핀으로 각각의 흐름 통로에 갇혀서 혼합이 방지됩니다.
  • 열전달: 유체를 분리하는 단단한 벽이나 표면에 발생합니다.

건설:

일반적으로 다음이 포함됩니다.

폐쇄형 채널 두 번째 유체(예: 물이나 냉매)가 튜브 내부로 흐릅니다.

튜브 또는 지느러미 표면 한 가지 유체(예: 공기)가 튜브를 가로질러 흐르는 곳입니다.

일반적인 응용 프로그램:

  • 자동차의 라디에이터
  • 에어컨 시스템
  • 산업용 HVAC 시스템
  • 열 회수형 인공호흡기(HRV)

장점:

  • 유체 간 오염 없음
  • 간단한 유지관리 및 청소
  • 분리되어야 하는 가스 및 유체에 적합합니다.

역류형 열교환기는 어떻게 작동하나요?

대향류 열교환기에서는 두 개의 인접한 알루미늄 판이 공기가 통과할 수 있는 통로를 만듭니다. 공급 공기는 판의 한쪽 면을 통과하고 배출 공기는 반대쪽 면을 통과합니다. 공기 흐름은 직교류 열교환기처럼 수직이 아닌 평행한 알루미늄 판을 따라 서로 통과합니다. 배출 공기의 열은 판을 통해 따뜻한 공기에서 차가운 공기로 전달됩니다.
때때로 배기 공기는 습기와 오염 물질로 오염되지만, 공기 흐름은 판형 열교환기와 섞이지 않아 공급 공기는 신선하고 깨끗합니다.

중국산 판형 열 회수 교환기

열교환기는 주로 알루미늄 호일, 스테인리스 스틸 호일 또는 폴리머와 같은 재료로 제작됩니다. 알루미늄 호일로 격리된 공기 흐름과 반대 방향으로 흐르는 공기 흐름 사이에 온도 차이가 발생하면 열전달이 발생하여 에너지를 회수합니다. 공기 대 공기 열교환기를 사용하면 배기가스의 열을 이용하여 신선한 공기를 예열하여 에너지 절약 목표를 달성할 수 있습니다. 이 열교환기는 특수한 점 표면 조합 밀봉 공정을 채택하여 긴 수명, 높은 온도 전도성, 무침투성, 배기가스 투과로 인한 2차 오염을 방지합니다.

Plate heat recovery exchanger

산업용 열 재활용 빈 시리즈

메모:

          1. 배기온도가 200°C 이하인 산업폐기가스로부터 발생하는 열을 회수하여 신선한 공기를 가열할 수 있습니다.

          2. 열 재활용 상자의 구조는 현장 상황에 맞게 설계될 수 있습니다.

          3. 이 구조에는 급기장치나 배기장치가 없습니다.

          4. 이 표의 열 회수 효율은 공기 공급량과 배기량에 따른 값입니다. 공기 공급량과 배기량에 따른 열 회수 효율은 당사에 문의하시기 바랍니다.

          5. 열 회수 상자는 바닥형, 천장형 및 기타 구조형(일반 풍량 100000m3/h, 최대 풍량 3T/h)으로 제작할 수 있습니다.

도움이 필요하신가요?
ko_KR한국어