카테고리 아카이브 제품

왜 역류가 평행류보다 효율적인가요?

열교환기에서 역류(counterflow)는 평행류보다 효율적입니다. 역류는 교환기 전체에서 두 유체 사이의 온도 차이(ΔT)를 더 크고 일정하게 유지하여 열전달을 극대화하기 때문입니다. 자세한 설명은 다음과 같습니다.

1. 온도 구배 및 열 전달

  • 역류:
    • 역류에서는 유체가 반대 방향으로 흐릅니다(예: 뜨거운 유체가 한쪽 끝으로 들어오고 차가운 유체가 반대쪽 끝으로 들어옴). 이로 인해 열교환기 전체 길이에 걸쳐 거의 일정한 온도 차이(ΔT)가 발생합니다.
    • 뜨거운 유체의 최고 온도(입구)는 차가운 유체의 출구와 만나고, 차가운 유체의 최저 온도(입구)는 뜨거운 유체의 출구와 만납니다. 이를 통해 차가운 유체가 뜨거운 유체의 입구 온도에 가까워져 열전달이 극대화됩니다.
    • 예: 뜨거운 유체가 100°C에서 들어와 40°C에서 나가고, 차가운 유체가 20°C에서 들어와 90°C에 가까운 온도에서 나가면 높은 열전달률을 얻을 수 있습니다.
  • 평행 흐름:
    • 병렬 흐름에서는 두 유체가 같은 방향으로 흐르므로 가장 큰 ΔT는 입구에서 발생하지만, 두 유체가 교환기를 따라 비슷한 온도에 접근함에 따라 ΔT는 빠르게 감소합니다.
    • 차가운 유체의 출구 온도는 뜨거운 유체의 출구 온도를 초과할 수 없으므로 전달되는 총 열이 제한됩니다.
    • 예: 뜨거운 유체가 100°C에서 들어와 60°C에서 나오면 20°C에서 들어오는 차가운 유체는 ~50°C에 도달할 뿐이어서 열전달이 감소합니다.

왜 중요한가: 열전달률(Q)은 ΔT에 비례합니다(Q = U × A × ΔT, 여기서 U는 열전달 계수이고 A는 표면적입니다). 대향류는 ΔT가 더 크고 일정하기 때문에 평균 열전달률이 더 높아 효율이 더 높습니다.

2. 로그 평균 온도 차이(LMTD)

  • 열교환기의 효율성은 종종 LMTD(대수 평균 온도 차이)를 사용하여 정량화되는데, LMTD는 열 전달을 주도하는 평균 온도 차이를 나타냅니다.
  • 역류: 열교환기 전체에 걸쳐 온도 차이가 비교적 일정하게 유지되므로 LMTD가 더 높습니다. 이를 통해 동일한 표면적에서 더 많은 열이 전달될 수 있습니다.
  • 평행 흐름: 출구 쪽으로 갈수록 온도 차이가 크게 줄어들어 LMTD가 낮아지고 열전달의 구동력이 감소합니다.
  • 결과: 동일한 열교환기 크기의 경우, 역류 방식은 LMTD가 더 높아 더 많은 열을 전달하거나 동일한 열전달을 달성하는 데 필요한 표면적이 더 작아서 더 컴팩트하고 효율적입니다.

3. 최대 열 회수

  • 역류 방식에서는 차가운 유체가 이론적으로 뜨거운 유체의 유입 온도(무한히 긴 교환기)에 도달하여 거의 완전한 열 회수가 가능합니다(예: Holtop의 3D 교차 역류 교환기와 같은 최신 설계에서는 효율이 90–95%임).
  • 병렬 흐름에서는 차가운 유체의 출구 온도가 뜨거운 유체의 출구 온도에 의해 제한되어 효율이 제한됩니다(일반적으로 60–80%). 따라서 역류는 에너지 회수 환기(ERV)나 최대 열 회수가 중요한 산업 공정과 같은 분야에 이상적입니다.

4. 실제적 의미

  • 역류: 일관된 ΔT는 필요한 열 전달 면적을 줄여 고성능 애플리케이션을 위한 더 작고 비용 효율적인 설계를 가능하게 합니다. HVAC, 산업용 냉각 및 에너지 회수 시스템에 널리 사용됩니다.
  • 평행 흐름: ΔT의 급격한 감소는 동등한 열전달을 달성하기 위해 더 넓은 열전달 면적을 필요로 하며, 이로 인해 재료 및 공간 요구 사항이 증가합니다. 이 방식은 기본 라디에이터나 교육용 장치처럼 효율이 덜 중요한 단순 응용 분야에 사용됩니다.

시각적 설명(간단하게)

  • 역류: 뜨거운 유체(100°C~40°C)와 차가운 유체(20°C~90°C)를 상상해 보세요. 열교환기 전체의 온도 차이는 비교적 높게 유지됩니다(예: ~20~60°C). 이로 인해 효율적인 열전달이 이루어집니다.
  • 평행 흐름: 동일한 유체가 큰 ΔT(100°C – 20°C = 80°C)로 시작하지만 빠르게 수렴합니다(예: 60°C – 50°C = 10°C). 이로 인해 구동력이 감소하고 효율성이 제한됩니다.

결론

역류는 열교환기를 따라 더 크고 일관된 온도 차이(ΔT)를 유지하여 더 높은 LMTD(저온저항체)와 동일 표면적에서 더 큰 열전달을 초래하기 때문에 더 효율적입니다. 따라서 에너지 회수 또는 산업 공정과 같이 고효율이 요구되는 분야에 선호되는 반면, 병렬 흐름은 더 간단하지만 효율이 낮아 덜 까다로운 분야에 적합합니다.

역류 열교환기 대 병렬 흐름 열교환기

Counterflow and parallel flow heat exchangers are two primary configurations for heat transfer between two fluids, differing in the direction of fluid flow and their impact on efficiency, temperature profiles, and applications. Below is a concise comparison based on their design, performance, and use cases.

1. Flow Configuration

  • Counterflow Heat Exchanger:
    • Fluids flow in opposite directions (e.g., hot fluid enters at one end, cold fluid at the opposite end).
    • Example: Hot fluid flows left to right, cold fluid flows right to left.
  • Parallel Flow Heat Exchanger:
    • Fluids flow in the same direction (e.g., both hot and cold fluids enter at the same end and exit at the opposite end).
    • Example: Both fluids flow left to right.

2. Heat Transfer Efficiency

  • 역류:
    • Higher efficiency: Maintains a larger temperature difference (ΔT) along the entire length of the exchanger, maximizing heat transfer per unit area.
    • Can achieve up to 90–95% thermal efficiency in well-designed systems (e.g., plate or tube exchangers).
    • The outlet temperature of the cold fluid can approach the inlet temperature of the hot fluid, making it ideal for applications requiring maximum heat recovery.
  • 평행 흐름:
    • Lower efficiency: The temperature difference (ΔT) is highest at the inlet but decreases rapidly as both fluids approach thermal equilibrium along the exchanger.
    • Typically achieves 60–80% efficiency, as the cold fluid’s outlet temperature cannot exceed the hot fluid’s outlet temperature.
    • Less effective for applications needing near-complete heat transfer.

3. Temperature Profile

  • 역류:
    • Temperature gradient is more uniform, with a near-constant ΔT across the exchanger.
    • Allows for a closer approach temperature (the difference between the hot fluid’s outlet and cold fluid’s inlet temperatures).
    • Example: Hot fluid enters at 100°C and exits at 40°C; cold fluid enters at 20°C and can exit close to 90°C.
  • 평행 흐름:
    • Temperature difference is large at the inlet but diminishes along the exchanger, limiting heat transfer as fluids reach similar temperatures.
    • Example: Hot fluid enters at 100°C and exits at 60°C; cold fluid enters at 20°C and may only reach 50°C.

4. Design and Complexity

  • 역류:
    • Often requires more complex piping or plate arrangements to ensure fluids flow in opposite directions, potentially increasing manufacturing costs.
    • Compact designs are possible due to higher efficiency, reducing material requirements for the same heat transfer rate.
  • 평행 흐름:
    • Simpler design, as both fluids enter and exit at the same ends, reducing piping complexity.
    • May require a larger heat transfer area (longer or bigger exchanger) to achieve comparable heat transfer, increasing size and material costs.

5. Applications

  • 역류:
    • Preferred in applications requiring high efficiency and maximum heat recovery, such as:
      • HVAC systems (e.g., energy recovery ventilators).
      • Industrial processes (e.g., chemical plants, power generation).
      • Wastewater heat recovery (e.g., shower heat exchangers).
      • Cryogenic systems where precise temperature control is critical.
    • Common in plate heat exchangers, double-pipe exchangers, and high-performance shell-and-tube designs.
  • 평행 흐름:
    • Used in applications where simplicity is prioritized, or where complete heat transfer is not critical, such as:
      • Small-scale cooling systems (e.g., car radiators).
      • Processes where fluids must not exceed certain temperatures (e.g., to avoid overheating the cold fluid).
      • Educational or experimental setups due to simpler construction.
    • Common in basic tube-in-tube or shell-and-tube heat exchangers.

6. Advantages and Disadvantages

  • 역류:
    • 장점:
      • Higher thermal efficiency, reducing energy losses.
      • Smaller size for the same heat transfer capacity.
      • Better suited for applications with large temperature differences.
    • Disadvantages:
      • More complex design and piping, potentially increasing costs.
      • May require additional measures to manage condensation or frost in cold environments.
  • 평행 흐름:
    • 장점:
      • Simpler design, easier to manufacture and maintain.
      • Lower pressure drop in some cases, reducing pumping costs.
    • Disadvantages:
      • Lower efficiency, requiring larger heat transfer areas.
      • Limited by the outlet temperature constraint (cold fluid cannot exceed hot fluid’s outlet temperature).

7. Practical Considerations

  • 역류:
    • Ideal for energy recovery systems (e.g., Holtop’s 3D cross-counterflow exchangers with 95% efficiency or RECUTECH’s RFK+ enthalpy exchangers).
    • Often equipped with features like hydrophilic coatings to manage condensation (e.g., Eri Corporation’s aluminum plate exchangers).
  • 평행 흐름:
    • Used in applications where cost and simplicity outweigh efficiency needs, such as basic HVAC systems or small-scale industrial cooling.
    • Less common in modern high-efficiency designs due to performance limitations.

Summary Table

패널 룸에 간접 증발 냉각 장치 적용

간접 증발 냉각(IEC) 장치는 점점 더 많이 사용되고 있습니다. 전기 패널실, 통제실, 그리고 장비 인클로저 추가적인 습도를 유발하지 않으면서 에너지 효율적인 냉방을 제공합니다. 이러한 방에는 일반적으로 작동 중 열을 발생시키는 민감한 전기 및 전자 장비가 보관되어 있으며, 안정적인 작동을 위해서는 제어된 온도 환경이 필요합니다.

Application of Cross Flow Heat Exchanger in Indirect Evaporative Cooling System of Data Center

패널 룸에 간접 증발 냉각 장치 적용

작동 원리

간접 증발 냉각 장치는 패널 룸 내부에서 물과 공기가 직접 접촉하지 않고 공기를 냉각합니다. 대신 열교환 기 실내의 따뜻한 공기에서 증발로 냉각되는 2차 기류로 열을 전달합니다. 이 과정은 다음을 보장합니다.

  • 습기 없음 패널 룸에 들어간다.

  • 그만큼 내부 공기는 깨끗하고 건조하게 유지됩니다.

  • 에너지 소비가 훨씬 낮습니다 전통적인 기계적 냉장보다.

패널 룸 애플리케이션의 이점

  1. 습기 없는 냉각:
    물과 직접 접촉하지 않으므로 민감한 전자 부품은 응축 및 부식 위험으로부터 안전합니다.

  2. 에너지 효율:
    IEC 장치는 기존의 에어컨 시스템에 비해 전력 소모가 적어 산업 현장에서 연속 작동에 이상적입니다.

  3. 유지 보수 감소:
    기계적 구성 요소가 적고 냉장 사이클이 없기 때문에 시스템 유지 관리가 간단하고 작동 수명이 더 깁니다.

  4. 향상된 신뢰성:
    안정적이고 시원한 환경을 유지하면 제어판의 수명을 연장하고 과열로 인한 장비 고장 위험을 줄이는 데 도움이 됩니다.

  5. 환경 친화적:
    냉매를 사용하지 않아 시스템의 환경 영향을 줄였습니다.

일반적인 응용 프로그램

  • 공장의 전기 패널실

  • 서버 및 네트워크 제어 캐비닛

  • 인버터 또는 PLC(프로그래밍 가능 논리 컨트롤러) 룸

  • 야외 통신 인클로저

  • 변전소 제어실

산업용 열 회수 상자, 폐가스 및 열 회수, 가스-가스 열교환기

산업용 열 회수 장치는 다양한 산업 분야에서 폐가스 흐름으로부터 열을 회수하도록 설계된 작고 효율적인 시스템입니다. 가스-가스 열교환기를 사용하여 두 기류를 혼합하지 않고 고온의 배기 가스에서 유입되는 신선한 공기로 열에너지를 전달합니다. 이 공정은 추가 가열 필요성을 줄여 에너지 효율을 크게 향상시키고, 운영 비용과 환경 영향을 줄입니다.

알루미늄이나 스테인리스 스틸과 같은 내구성 있는 소재로 제작된 이 시스템은 고온 및 부식성 환경을 견딜 수 있습니다. 내부 열교환기는 주로 알루미늄 호일이나 판으로 제작되어 높은 열전도도와 효율적인 열 전달을 보장합니다. 이러한 설계는 오염된 배기 공기와 깨끗한 공급 공기 간의 교차 오염을 방지하여 식품 가공, 담배, 인쇄, 화학, 슬러지 처리 등의 산업에 적합합니다.

이 에너지 절약 솔루션은 폐열을 회수할 뿐만 아니라 실내 공기질을 개선하고 안정적인 생산 환경을 유지하는 데에도 도움을 줍니다. 설치 및 유지 보수가 간편한 산업용 열 회수 박스는 지속 가능성을 높이고 에너지 절약 규정을 준수하려는 공장에 현명한 선택입니다.

Industrial heat recovery box, waste gas and heat recovery, gas to gas heat exchanger

산업용 열 회수 상자, 폐가스 및 열 회수, 가스-가스 열교환기

교차 흐름 열교환기는 어떻게 작동합니까?

에이 crossflow heat exchanger works by allowing two fluids to flow at right angles (perpendicular) to each other, typically with one fluid flowing through tubes and the other flowing across the outside of the tubes. The key principle is that heat is transferred from one fluid to the other through the walls of the tubes. Here's a step-by-step breakdown of how it works:

Components:

  1. Tube Side: One of the fluids flows through the tubes.
  2. Shell Side: The other fluid flows over the tubes, across the tube bundle, in a direction perpendicular to the flow of the fluid inside the tubes.

Working Process:

  1. Fluid Inlet: Both fluids (hot and cold) enter the heat exchanger at different inlets. One fluid (let's say the hot fluid) enters through the tubes, and the other fluid (cold fluid) enters the space outside the tubes.
  2. Fluid Flow:

    • The fluid flowing inside the tubes moves in a straight or slightly twisted path.
    • The fluid flowing outside the tubes crosses over them in a perpendicular direction. The path of this fluid can be either crossflow (directly across the tubes) or have a more complex configuration, like a combination of crossflow and counterflow.

  3. Heat Transfer:

    • Heat from the hot fluid is transferred to the tube walls and then to the cold fluid flowing across the tubes.
    • The efficiency of heat transfer depends on the temperature difference between the two fluids. The larger the temperature difference, the more efficient the heat transfer.

  4. Outlet: After heat transfer, the now cooler hot fluid exits through one outlet, and the now warmer cold fluid exits through another outlet. The heat exchange process results in a temperature change in both fluids as they flow through the heat exchanger.

Design Variations:

  • Single-pass crossflow: One fluid flows in a single direction across the tubes, and the other fluid moves through the tubes.
  • Multi-pass crossflow: The fluid inside the tubes can flow in multiple passes to increase the contact time with the fluid outside, improving heat transfer.

Efficiency Considerations:

  • Crossflow heat exchangers are generally less efficient than counterflow heat exchangers because the temperature gradient between the two fluids decreases along the length of the heat exchanger. In counterflow, the fluids maintain a more consistent temperature difference, which makes it more effective for heat transfer.
  • However, crossflow heat exchangers are easier to design and are often used in situations where space is limited or where fluids need to be separated (like in air-to-air heat exchangers).

Applications:

  • Air-cooled heat exchangers (like in HVAC systems or car radiators).
  • Cooling of electronic equipment.
  • Heat exchangers for ventilation systems.

So, while not as thermally efficient as counterflow heat exchangers, crossflow designs are versatile and commonly used when simplicity or space-saving is important.

교차 흐름 열교환기의 온도 프로파일

Here’s a breakdown of the temperature profile for a cross flow heat exchanger, specifically when both fluids are unmixed:


🔥 Cross Flow Heat Exchanger – Both Fluids Unmixed

➤ Flow Arrangement:

  • One fluid flows horizontally (say, hot fluid in tubes).
  • The other flows vertically (say, cold air across the tubes).
  • No mixing within or between the fluids.


📈 Temperature Profile Description:

▪ Hot Fluid:

  • Inlet temperature: High.
  • As it flows, it loses heat to the cold fluid.
  • Outlet temperature: Lower than inlet, but not uniform across the exchanger due to varying contact time.

▪ Cold Fluid:

  • Inlet temperature: Low.
  • Gains heat as it flows across the hot tubes.
  • Outlet temperature: Higher, but also varies across the exchanger.

🌀 Because of the crossflow and no mixing:

  • Each point on the exchanger sees a different temperature gradient, depending on how long each fluid has been in contact with the surface.
  • The temperature distribution is nonlinear and more complex than in counterflow or parallel flow exchangers.


📊 Typical Temperature Profile (schematic layout):

                ↑ Cold fluid in

High │ ┌──────────────┐
Temp │ │ │
│ │ │ → Hot fluid in (right side)
│ │ │
↓ └──────────────┘
Cold fluid out ← Hot fluid out

⬇ Temperature Curves:

  • Cold fluid gradually heats up — the curve starts low and arcs upward.
  • Hot fluid cools down — starts high and arcs downward.
  • The curves are not parallel, 그리고 not symmetrical due to crossflow geometry and varying heat exchange rate.


🔍 Efficiency:

  • The effectiveness depends on the heat capacity ratio and the NTU (Number of Transfer Units).
  • Generally less efficient than counterflow but more efficient than parallel flow.

두 유체가 혼합되지 않은 교차 흐름 열교환기

에이 두 유체가 혼합되지 않은 교차 흐름 열교환기 두 유체(뜨겁고 차가운 유체)가 서로 수직(90°)으로 흐르는 열교환기 유형을 말합니다. 두 유체 모두 내부적으로 또는 다른 유체와 섞이지 않습니다.. 이 구성은 다음과 같은 응용 프로그램에서 일반적입니다. 공기 대 공기 열 회수 또는 자동차 라디에이터.

주요 특징:

  • 교차 흐름: 두 유체는 서로 직각으로 움직입니다.
  • 혼합되지 않은 유체: 뜨겁거나 차가운 유체는 모두 단단한 벽이나 핀으로 각각의 흐름 통로에 갇혀서 혼합이 방지됩니다.
  • 열전달: 유체를 분리하는 단단한 벽이나 표면에 발생합니다.

건설:

일반적으로 다음이 포함됩니다.

폐쇄형 채널 두 번째 유체(예: 물이나 냉매)가 튜브 내부로 흐릅니다.

튜브 또는 지느러미 표면 한 가지 유체(예: 공기)가 튜브를 가로질러 흐르는 곳입니다.

일반적인 응용 프로그램:

  • 자동차의 라디에이터
  • 에어컨 시스템
  • 산업용 HVAC 시스템
  • 열 회수형 인공호흡기(HRV)

장점:

  • 유체 간 오염 없음
  • 간단한 유지관리 및 청소
  • 분리되어야 하는 가스 및 유체에 적합합니다.

역류형 열교환기는 어떻게 작동하나요?

In the counterflow heat exchanger, two neighboring aluminum plates create channels for theair to pass through. The supply air passes on one side of the plate and the exhaust air onthe other. Airflows are passed by each other along parallel aluminum plates instead ofperpendicular like in a crossflow heat exchanger. The heat in the exhaust air is transferredthrough the plate from the warmer air to the colder air.
Sometimes, the exhaust air is contaminated with humidity and pollutants, but airflows nevermix with a plate heat exchanger, leaving the supply air fresh and clean.

중국산 판형 열 회수 교환기

Heat exchangers are mainly made of materials such as aluminum foil, stainless steel foil, or polymers. When there is a temperature difference between the airflow isolated by aluminum foil and flowing in opposite directions, heat transfer occurs, achieving energy recovery. By using an air to air heat exchanger, the heat in the exhaust can be utilized to preheat the fresh air, thereby achieving the goal of energy conservation. The heat exchanger adopts a unique point surface combination sealed process, which has a long service life, high temperature conductivity, no permeation, and no secondary pollution caused by the permeation of exhaust gas.

Plate heat recovery exchanger

산업용 열 재활용 빈 시리즈

메모:

          1. 배기온도가 200°C 이하인 산업폐기가스로부터 발생하는 열을 회수하여 신선한 공기를 가열할 수 있습니다.

          2. 열 재활용 상자의 구조는 현장 상황에 맞게 설계될 수 있습니다.

          3. 이 구조에는 급기장치나 배기장치가 없습니다.

          4. 이 표의 열 회수 효율은 공기 공급량과 배기량에 따른 값입니다. 공기 공급량과 배기량에 따른 열 회수 효율은 당사에 문의하시기 바랍니다.

          5. 열 회수 상자는 바닥형, 천장형 및 기타 구조형(일반 풍량 100000m3/h, 최대 풍량 3T/h)으로 제작할 수 있습니다.

도움이 필요하신가요?
ko_KR한국어