1. Sources et caractéristiques de la chaleur résiduelle issue du séchage des fruits de mer et des produits aquatiques
Les produits de la mer et aquatiques (crevettes, poissons, crustacés, etc.) sont généralement séchés à l'aide d'équipements de séchage à air chaud, principalement à l'aide de chaudières à charbon ou à gaz, ou de systèmes de chauffage électrique. Le processus de séchage génère une grande quantité de gaz de combustion à haute température et à forte humidité, généralement compris entre 50 et 100 °C, contenant une chaleur sensible et une chaleur latente importantes.
Chaleur sensible : La chaleur inhérente aux gaz de combustion à haute température eux-mêmes.
Chaleur latente : Chaleur libérée par la condensation de la vapeur d’eau dans les gaz de combustion. En raison de la forte teneur en humidité des fruits de mer, la proportion de chaleur latente est particulièrement importante.
Caractéristiques des gaz d'échappement : Humidité élevée (contenant une grande quantité de vapeur d'eau), peut contenir des sels ou des matières organiques, qui peuvent provoquer la corrosion de l'équipement ou l'accumulation de tartre sur les surfaces de l'échangeur de chaleur.
Si ces gaz d’échappement sont émis directement, non seulement l’énergie thermique sera gaspillée, mais la pollution thermique et la pollution humide augmenteront également, affectant l’environnement.
2. Caractéristiques de l'échangeur de chaleur à plaques BXB
L'échangeur de chaleur à plaques BXB est un dispositif compact et hautement efficace, largement utilisé dans la récupération de chaleur résiduelle industrielle, particulièrement adapté au traitement des gaz d'échappement à haute température et à forte humidité. Ses principales caractéristiques sont les suivantes :
Échange de chaleur à haute efficacité : la structure de la plaque offre une grande surface d'échange de chaleur, ce qui se traduit par une efficacité de transfert de chaleur élevée avec des taux de récupération allant jusqu'à 60-80%.
Conception compacte : par rapport aux échangeurs de chaleur à calandre et à tubes, il présente un encombrement réduit, ce qui le rend adapté aux équipements de séchage à espace restreint.
Résistance à la corrosion : des plaques en acier inoxydable ou en alliage de titane peuvent être sélectionnées pour résister à la corrosion causée par les sels et les composés organiques présents dans les gaz d'échappement du séchage des fruits de mer.
Entretien facile : La conception amovible facilite le nettoyage pour traiter le tartre ou les dépôts dans les gaz d'échappement.
Faible perte de charge : la résistance minimale du fluide réduit la consommation d'énergie du système.
3. Application des échangeurs de chaleur à plaques BXB au séchage des fruits de mer et des produits aquatiques
(1) Conception du système
Déroulement du processus :
Collecte des gaz d'échappement : les gaz d'échappement à haute température et à forte humidité (50-100 °C) émis par l'équipement de séchage sont acheminés par des tuyaux vers l'entrée côté chaud de l'échangeur de chaleur à plaques BXB.
Transfert de chaleur : La chaleur sensible et latente des gaz d'échappement est transférée à travers les plaques de l'échangeur de chaleur vers le fluide côté froid (généralement de l'air froid ou de l'eau de refroidissement).
Utilisation de la chaleur :
Préchauffage de l'air entrant : La chaleur récupérée est utilisée pour préchauffer l'air entrant dans la chambre de séchage, réduisant ainsi la consommation énergétique du réchauffeur.
Production d’eau chaude : La chaleur est transférée à l’eau pour produire de l’eau chaude destinée au nettoyage des équipements ou au chauffage des installations.
Optimisation de la déshumidification : Après refroidissement, l'humidité des gaz d'échappement diminue, améliorant ainsi l'efficacité du système de déshumidification.
Émission de gaz d'échappement : Les gaz d'échappement refroidis (température réduite à 40–50 °C) sont ensuite traités par le système de déshumidification avant l'émission, réduisant ainsi la pollution thermique.
Configuration de l'équipement :
Type d'échangeur de chaleur : Les échangeurs de chaleur à plaques BXB sont sélectionnés, avec des plaques en acier inoxydable 316L ou en alliage de titane recommandées pour éviter la corrosion saline.
Conception des plaques : les plaques ondulées sont utilisées pour améliorer la turbulence, améliorer l'efficacité du transfert de chaleur et réduire l'entartrage.
Systèmes auxiliaires : Équipés de dispositifs de filtration des gaz d'échappement (pour éliminer la poussière et les composés organiques) et d'un système de nettoyage automatique pour prolonger la durée de vie de l'échangeur de chaleur.
(2) Principe de fonctionnement
La chaleur des gaz d'échappement est transférée au fluide côté froid via les plaques métalliques de l'échangeur de chaleur à plaques. Les canaux étroits entre les plaques améliorent l'efficacité du transfert thermique.
Au cours du processus d'échange de chaleur, une partie de la vapeur d'eau contenue dans les gaz d'échappement à haute température et à forte humidité se condense, libérant ainsi de la chaleur latente et améliorant encore l'efficacité de la récupération de chaleur.
Le milieu froid (tel que l'air ou l'eau) absorbe la chaleur, augmente sa température et peut être directement utilisé pour le préchauffage du séchage ou d'autres exigences du processus.
(3) Scénarios d'application
Préchauffage de l'air entrant : La récupération de la chaleur des gaz d'échappement pour chauffer l'air frais entrant des salles de séchage réduit la consommation de la source de chaleur.
Alimentation en eau chaude : Utilisation de la chaleur récupérée pour produire de l’eau chaude à 40-60°C pour nettoyer les équipements de transformation des fruits de mer ou fournir de l’eau chaude à usage industriel.
Optimisation de la déshumidification : la réduction de l'humidité des gaz d'échappement par refroidissement et condensation améliore l'efficacité de la déshumidification et améliore les performances de séchage.
4. Analyse des avantages
Économies d'énergie et réduction des émissions : L'échangeur de chaleur à plaques BXB peut récupérer 50 à 801 TP3T de chaleur des gaz d'échappement, réduisant ainsi la consommation d'énergie de séchage de 20 à 401 TP3T, ainsi que la consommation de carburant et les émissions de CO2. Par exemple, la récupération de 601 TP3T de chaleur résiduelle peut réduire considérablement les coûts énergétiques par tonne de transformation des produits de la mer.
Avantages économiques : En réduisant la consommation de carburant et d’électricité, l’investissement en équipement permet généralement de récupérer les coûts en 1 à 2 ans.
Avantages environnementaux : La réduction de la température et de l’humidité des gaz d’échappement réduit la pollution thermique et humide, répondant ainsi aux exigences de protection de l’environnement.
Qualité du produit : Le maintien de températures de séchage stables empêche la surchauffe ou l'humidité excessive, améliorant ainsi la qualité du séchage des fruits de mer.
Traduit avec DeepL.com (version gratuite)