Архив автора Шаохай

В чем разница между теплообменниками перекрестного и противоточного тока?

Главное отличие между поперечный поток и противоток теплообменниках лежит в направлении, в котором две жидкости движутся относительно друг друга.

  1. Противоточный теплообменник:

    • В противоточном теплообменнике две жидкости движутся в противоположных направлениях. Такая конструкция обеспечивает максимальный температурный градиент между ними, что повышает эффективность теплопередачи.
    • ВыгодаПротивоточная конструкция обычно более эффективна, поскольку разница температур между жидкостями поддерживается по всей длине теплообменника. Это делает её идеальным вариантом для применений, где максимальная теплопередача имеет решающее значение.

  2. Перекрестноточный теплообменник:

    • В перекрёстном теплообменнике две жидкости движутся перпендикулярно (под углом) друг к другу. Одна жидкость обычно движется в одном направлении, а другая — в направлении, пересекающем путь первой.
    • Выгода: Хотя схема с перекрёстным током не столь термически эффективна, как противоточная, она может быть полезна при наличии пространственных или конструктивных ограничений. Она часто используется в ситуациях, когда жидкости должны течь по фиксированным траекториям, например, в теплообменниках с воздушным охлаждением или в ситуациях с фазовыми переходами (например, конденсацией или испарением).

Ключевые различия:

  • Направление потока: Противоток = противоположные направления; Перекрёстный поток = перпендикулярные направления.
  • Эффективность: Противоток, как правило, обеспечивает более высокую эффективность теплопередачи из-за более постоянного градиента температур между жидкостями.
  • Приложения: Поперечный поток часто используется там, где противоток невозможен из-за конструктивных ограничений или ограниченности пространства.

Система вентиляции свежего воздуха с тепловым насосом в Китае

Система приточной вентиляции с тепловым насосом сочетает в себе вентиляцию и рекуперацию энергии, используя тепловой насос для регулирования температуры поступающего свежего воздуха и одновременного удаления отработанного воздуха из помещения. Этот тип системы особенно энергоэффективен, поскольку не только улучшает качество воздуха в помещении, но и использует тепловую энергию отработанного воздуха.

Вот как это обычно работает:

  1. Приток свежего воздуха: Система забирает свежий воздух снаружи.
  2. Работа теплового насоса: Тепловой насос извлекает тепло из отводимого воздуха (или наоборот, в зависимости от сезона) и передаёт его приточному свежему воздуху. Зимой он может подогревать холодный наружный воздух, а летом — охлаждать приточный.
  3. Вентиляция: В процессе работы система также вентилирует помещение, удаляя застоявшийся, загрязненный воздух, поддерживая постоянный приток свежего воздуха без лишних затрат энергии.

Преимущества включают в себя:

  • Энергоэффективность: Тепловой насос снижает потребность в дополнительном отоплении или охлаждении, экономя затраты на электроэнергию.
  • Улучшение качества воздуха: Постоянный приток свежего воздуха помогает удалять загрязняющие вещества из помещения, обеспечивая лучшее качество воздуха.
  • Контроль температуры: Он может помочь поддерживать комфортную температуру в помещении круглый год, независимо от того, требуется ли отопление или охлаждение.

Эти системы обычно используются в энергоэффективных зданиях, жилых домах и коммерческих помещениях, где качество воздуха и экономия энергии являются приоритетами.

Радиаторы для контейнеров хранения энергии на основе натрий-ионных аккумуляторов

Радиаторы для контейнеров для хранения энергии на основе натрий-ионных аккумуляторов критически важны для терморегулирования, обеспечивая производительность, безопасность и долговечность аккумуляторов. Натрий-ионные аккумуляторы выделяют тепло во время работы, особенно при высокой мощности или быстрых циклах зарядки-разрядки, что требует эффективных систем охлаждения, адаптированных к контейнерным системам хранения. Ниже представлен краткий обзор, сокращённый на 50% по сравнению с предыдущим ответом и без ссылок, с упором на радиаторы для натрий-ионных аккумуляторов.


Роль радиаторов

  • Терморегуляция: Поддерживайте оптимальную температуру аккумулятора (от -20°C до 60°C), чтобы предотвратить перегрев или тепловой пробой.
  • Продление жизни: Стабильные температуры снижают деградацию материала, продлевая срок службы батареи.
  • Повышение эффективности: Постоянные температуры повышают эффективность заряда-разряда.

Ключевые особенности

  • Широкий диапазон температур: Поддерживает работу натрий-ионных аккумуляторов при температуре от -30°C до 60°C, снижая потребность в сложном охлаждении.
  • Фокус на безопасности: Снижает риск возникновения термических проблем, используя присущую ионам натрия стабильность.
  • Экономически эффективно: Использует доступные материалы (например, алюминий), что соответствует преимуществу низкой стоимости натрий-ионных аккумуляторов.
  • Модульная конструкция: Подходит для контейнерных систем, что упрощает масштабирование и обслуживание.


Приложения

  • Сетевое хранилище: Большие контейнеры для интеграции возобновляемых источников энергии.
  • Электромобили: Компактное охлаждение для аккумуляторных батарей.
  • Промышленное резервное копирование: Надежное охлаждение для центров обработки данных и заводов.


Проблемы

  • Более низкая плотность энергии: Для больших объемов аккумуляторов требуется обширный радиатор.
  • Баланс затрат: Должен оставаться экономичным, чтобы соответствовать доступности натрий-иона.
  • Экологическая устойчивость: Требуется устойчивость к коррозии в суровых климатических условиях.


Будущие направления

  • Передовые материалы: Изучите композиты или графен для лучшей теплопередачи.
  • Гибридные системы: Сочетание воздушного и жидкостного охлаждения для повышения эффективности.
  • Умное управление: Интеграция датчиков для адаптивного охлаждения в зависимости от нагрузки на аккумулятор.

температурный профиль для теплообменника с перекрестным током

Вот разбивка температурный профиль для теплообменник с перекрестным током, особенно когда обе жидкости не смешаны:


🔥 Теплообменник с перекрестным потоком – обе жидкости не смешиваются

➤ Организация потока:

  • Одна жидкость течет горизонтально (например, горячая жидкость в трубках).
  • Другой поток движется вертикально (например, холодный воздух по трубкам).
  • Смешивание жидкостей внутри или между ними не допускается.


📈 Описание профиля температуры:

▪ Горячая жидкость:

  • Температура на входе: Высокий.
  • По мере того, как он течет, он теряет тепло к холодной жидкости.
  • Температура на выходе: Ниже, чем на входе, но неравномерно по всему теплообменнику из-за разного времени контакта.

▪ Холодная жидкость:

  • Температура на входе: Низкий.
  • Получает тепло, протекая по горячим трубкам.
  • Температура на выходе: Выше, но также варьируется в зависимости от обменника.

🌀 Из-за перекрёстного потока и отсутствия смешивания:

  • Каждая точка на обменнике видит разный температурный градиент, в зависимости от того, как долго каждая жидкость находилась в контакте с поверхностью.
  • Распределение температуры нелинейный и более сложны, чем в противоточных или параллельноточных теплообменниках.


📊 Типичный температурный профиль (схематическое изображение):

                ↑ Холодная жидкость в

Высокий │ ┌──────────────┐
Темп │ │ │
│ │ │ → Горячая жидкость внутри (справа)
│ │ │
↓ └──────────────┘
Выход холодной жидкости ← Выход горячей жидкости

⬇ Температурные кривые:

  • Холодная жидкость постепенно нагревается — кривая начинается низко и идет дугой вверх.
  • Горячая жидкость остывает — начинается высоко и опускается вниз.
  • Кривые не параллельно, и не симметричный из-за геометрии поперечного потока и переменной скорости теплообмена.


🔍 Эффективность:

  • Эффективность зависит от коэффициент теплоемкости и NTU (количество единиц передачи).
  • В целом менее эффективный чем противоток, но более эффективно чем параллельный поток.

теплообменник с перекрестным током, в котором обе жидкости не смешиваются

А теплообменник с перекрестным током, в котором обе жидкости не смешиваются относится к типу теплообменника, в котором две жидкости (горячая и холодная) текут перпендикулярно (под углом 90°) друг к другу, и ни одна жидкость не смешивается внутри или с другой. Такая конфигурация распространена в таких приложениях, как рекуперация тепла воздух-воздух или автомобильные радиаторы.

Основные характеристики:

  • Поперечный поток: Две жидкости движутся под прямым углом друг к другу.
  • Несмешанные жидкости: Как горячая, так и холодная жидкости ограничиваются соответствующими им проточными каналами с помощью сплошных стенок или ребер, что предотвращает смешивание.
  • Передача тепла: Происходит через твердую стенку или поверхность, разделяющую жидкости.

Строительство:

Обычно включает в себя:

Закрытые каналы для протекания второй жидкости (например, воды или хладагента) внутри трубок.

Трубы или оребренные поверхности где по трубкам течет одна жидкость (например, воздух).

Распространенные применения:

  • Радиаторы в автомобилях
  • Системы кондиционирования воздуха
  • Промышленные системы ОВК
  • Аппараты ИВЛ с рекуперацией тепла (HRV)

Преимущества:

  • Отсутствие загрязнения между жидкостями
  • Простое обслуживание и чистка
  • Подходит для газов и жидкостей, которые должны храниться раздельно.

теплообменник с поперечным потоком, используемый в кардиопульмональной

Перекрёстный теплообменник в кардиопульмональном контексте, например, во время процедур искусственного кровообращения (ИК), является важнейшим компонентом, используемым для регулирования температуры крови пациента. Эти устройства обычно встраиваются в аппараты искусственного кровообращения для подогрева или охлаждения крови, циркулирующей вне организма во время операций на открытом сердце или других процедур, требующих временной поддержки сердца и лёгких.

Как это работает

В перекрёстноточном теплообменнике две жидкости — обычно кровь и теплоноситель (например, вода) — движутся перпендикулярно друг другу, разделённые твёрдой поверхностью (например, металлическими или полимерными пластинами/трубками), которая способствует теплопередаче без смешивания жидкостей. Конструкция обеспечивает максимальную эффективность теплообмена, сохраняя при этом биосовместимость и минимизируя травмирование крови.

  • Путь кровотока: Насыщенная кислородом кровь из аппарата искусственного кровообращения протекает через один набор каналов или трубок.
  • Путь потока воды: Вода с контролируемой температурой протекает через смежный набор каналов в перпендикулярном направлении, нагревая или охлаждая кровь в зависимости от клинической необходимости (например, вызывая гипотермию или согревание).
  • Передача тепла: Градиент температуры между кровью и водой обеспечивает теплообмен через проводящую поверхность. Схема с перекрёстным потоком обеспечивает высокую скорость теплопередачи благодаря постоянной разнице температур в теплообменнике.

Ключевые особенности

  1. Биосовместимость: Материалы (например, нержавеющая сталь, алюминий или полимеры медицинского назначения) выбираются таким образом, чтобы предотвратить свертывание крови, гемолиз или иммунные реакции.
  2. Компактный дизайн: Теплообменники с перекрестным током компактны и имеют решающее значение для интеграции в контуры CPB.
  3. Эффективность: Перпендикулярный поток максимизирует температурный градиент, улучшая теплопередачу по сравнению с конструкциями с параллельным потоком.
  4. Стерильность: Система герметична, что предотвращает загрязнение, а одноразовые компоненты часто используются при процедурах, проводимых у одного пациента.
  5. Контроль: Paired with a heater-cooler unit, the exchanger maintains precise blood temperature (e.g., 28–32°C for hypothermia, 36–37°C for normothermia).

Applications in Cardiopulmonary Procedures

  • Hypothermia Induction: During CPB, the blood is cooled to reduce metabolic demand, protecting organs like the brain and heart during reduced circulation.
  • Rewarming: After surgery, the blood is gradually warmed to restore normal body temperature without causing thermal stress.
  • Temperature Regulation: Maintains stable blood temperature in extracorporeal membrane oxygenation (ECMO) or other long-term circulatory support systems.

Design Considerations

  • Surface Area: Larger surface areas improve heat transfer but must balance with minimizing priming volume (the amount of fluid needed to fill the circuit).
  • Расходы: Blood flow must be turbulent enough for efficient heat transfer but not so high as to damage red blood cells.
  • Падение давления: The design minimizes resistance to blood flow to avoid excessive pump pressure.
  • Infection Control: Stagnant water in heater-cooler units can harbor bacteria (e.g., Mycobacterium chimaera), necessitating strict maintenance protocols.

Пример

A typical cross-flow heat exchanger in a CPB circuit might consist of a bundle of thin-walled tubes through which blood flows, surrounded by a water jacket where temperature-controlled water circulates in a perpendicular direction. The exchanger is connected to a heater-cooler unit that adjusts water temperature based on real-time feedback from the patient’s core temperature.

Challenges and Risks

  • Hemolysis: Excessive shear stress from turbulent flow can damage blood cells.
  • Thrombogenicity: Surface interactions may trigger clot formation, requiring anticoagulation (e.g., heparin).
  • Air Embolism: Improper priming can introduce air bubbles, a serious risk during bypass.
  • Infections: Contaminated water in heater-cooler units has been linked to rare but severe infections.

Как работает противоточный теплообменник?

В противоточном теплообменнике две соседние алюминиевые пластины образуют каналы для прохождения воздуха. Приточный воздух проходит по одну сторону пластины, а вытяжной — по другую. Потоки воздуха обходят друг друга вдоль параллельных алюминиевых пластин, а не перпендикулярно, как в перекрёстном теплообменнике. Тепло вытяжного воздуха передаётся через пластину от тёплого воздуха к холодному.
Иногда отводимый воздух загрязнен влагой и вредными веществами, но потоки воздуха никогда не смешиваются с пластинчатым теплообменником, оставляя приточный воздух свежим и чистым.

Использование воздухо-воздушных теплообменников в вентиляции и энергосберегающей технике

Основная функция воздухо-воздушного теплообменника заключается в передаче остаточного тепла от отводимого воздуха (вытяжного воздуха из помещения) свежему воздуху (приточному воздуху) посредством теплообмена, без непосредственного смешивания двух воздушных потоков. Весь процесс основан на принципах теплопроводности и энергосбережения, как указано ниже:

Улавливание отходящего тепла:
Выбрасываемый из помещения воздух (отработанный) обычно содержит большое количество тепла (теплый воздух зимой и холодный воздух летом), которое в противном случае рассеивалось бы непосредственно наружу.
Отработанный воздух проходит через одну сторону теплообменника, передавая тепло теплопроводящему материалу теплообменника.
Теплопередача:
Воздухо-воздушные теплообменники обычно состоят из металлических пластин, трубных пучков или тепловых трубок, которые обладают хорошей теплопроводностью.
Свежий воздух (воздух, поступающий снаружи) проходит через другую сторону теплообменника, косвенно контактируя с теплом на стороне отвода воздуха и поглощая тепло через стенку теплообменника.
Зимой свежий воздух предварительно подогревается; Летом свежий воздух предварительно охлаждается (если отводимый воздух - это холодный воздух из кондиционера).
Рекуперация и сохранение энергии:
Предварительный нагрев или охлаждение приточного воздуха снижает энергопотребление последующего отопительного или охлаждающего оборудования. Например, зимой температура наружного воздуха может составлять 0 °C, а температура отводимого воздуха — 20 °C. После прохождения через теплообменник температура приточного воздуха может повыситься до 15 °C. Таким образом, системе отопления достаточно нагреть приточный воздух только с 15 °C до заданной температуры, а не начинать с 0 °C.
Изоляция воздушного потока:
Отработанный и свежий воздух проходят через разные каналы в теплообменнике, что позволяет избежать перекрестного загрязнения и обеспечить качество воздуха в помещении.
технологический процесс
Сбор отработанных газов: отработанные газы в помещении направляются в воздухо-воздушный теплообменник через вентиляционную систему (например, вытяжной вентилятор).
Подача свежего воздуха: наружный свежий воздух поступает с другой стороны теплообменника через воздуховод свежего воздуха.
Теплообмен: Внутри теплообменника отработанный и свежий воздух обмениваются теплом в изолированных каналах.
Подготовка свежего воздуха: предварительно нагретый (или предварительно охлажденный) свежий воздух поступает в систему кондиционирования или напрямую направляется в помещение, а температура или влажность дополнительно регулируются по мере необходимости.
Выброс выхлопных газов: После завершения теплообмена температура выхлопных газов снижается, и они наконец выбрасываются наружу.
Типы воздухо-воздушных теплообменников
Пластинчатый теплообменник: состоит из нескольких слоев тонких пластин, в которых отработанный и свежий воздух циркулируют в противоположных или пересекающихся направлениях в соседних каналах, что обеспечивает высокую эффективность.
Колесный теплообменник: использует вращающиеся тепловые колеса для поглощения тепла отработавших газов и передачи его свежему воздуху, подходит для систем с большим объемом воздуха.
Теплообменник с тепловой трубкой: он использует испарение и конденсацию рабочей жидкости внутри тепловой трубки для передачи тепла и подходит для сценариев с большими перепадами температур.
преимущество
Экономия энергии: рекуперация 70%–90% отработанного тепла отработавших газов, что значительно снижает потребление энергии на отопление или охлаждение.
Защита окружающей среды: сокращение потребления энергии и сокращение выбросов углерода.
Повышение комфорта: избегайте прямого попадания холодного или горячего свежего воздуха и улучшайте микроклимат в помещении.

Коробка отвода тепла отходящих газов шахты со встроенным воздухо-воздушным теплообменником

Встроенный воздухо-воздушный теплообменник в блоке отвода тепла отработанного воздуха шахты – это устройство, специально разработанное для рекуперации тепла отработанного воздуха шахты. Отработанный воздух шахты – это низкотемпературный и высоковлажный отработанный газ, выбрасываемый из шахты, который обычно содержит определённое количество тепла, но традиционно выбрасывается напрямую, без использования. В этом устройстве используется встроенный воздухо-воздушный теплообменник (т.е. теплообменник типа «воздух-воздух») для передачи тепла отработанного воздуха другому потоку холодного воздуха, тем самым достигая цели рекуперации тепла.

Принцип работы
Недостаток воздуха: Недостаток воздуха в шахте поступает в теплоотвод через вентиляционную систему. Температура отводимого воздуха обычно составляет около 20 °C (конкретная температура варьируется в зависимости от глубины шахты и окружающей среды), а влажность относительно высокая.
Функция воздухо-воздушного теплообменника: Встроенный воздухо-воздушный теплообменник обычно имеет пластинчатую или трубчатую конструкцию, и отработанный воздух обменивается теплом с холодным воздухом через перегородки в теплообменнике. Тепло от отсутствия ветра передается холодному воздуху, при этом два воздушных потока не смешиваются напрямую.
Тепловая мощность: После нагревания путем теплообмена холодный воздух может использоваться для защиты от замерзания воздухозаборников шахт, отопления зданий в шахтерских районах или для нагрева воды в бытовых целях, в то время как отработанный воздух выбрасывается при более низкой температуре после отдачи тепла.
Характеристики и преимущества
Эффективность и энергосбережение: воздухо-воздушные теплообменники не требуют дополнительных рабочих тел и напрямую используют теплопередачу от воздуха к воздуху. Они отличаются простотой конструкции и низкими эксплуатационными расходами.
Экологичность: за счет переработки отработанного тепла и сокращения потерь энергии достигается соответствие требованиям зеленого и низкоуглеродного развития.
Высокая степень адаптивности: оборудование может быть индивидуально спроектировано и сконструировано в соответствии с расходом и температурой выхлопных газов шахты, что делает его пригодным для шахт различных масштабов.
Простота обслуживания: по сравнению с системами с тепловыми трубками или тепловыми насосами, теплообменники типа «воздух-воздух» имеют относительно простую конструкцию и требуют меньшего обслуживания.
Сценарии применения
Защита от замерзания на устье скважины: использование рекуперированного тепла для обогрева воздухозаборника шахты и предотвращения замерзания в зимний период.
Отопление зданий: обеспечение отопления офисных зданий, общежитий и т. д. в районе добычи полезных ископаемых.
Горячее водоснабжение: в сочетании с последующей системой обеспечивает источник тепла для горячего водоснабжения в районе добычи.
меры предосторожности
Обработка влаги: Из-за высокой влажности отводимого воздуха в теплообменнике может возникнуть проблема накопления конденсата, поэтому необходимо предусмотреть дренажную систему или антикоррозионные материалы.
Эффективность теплопередачи: эффективность теплообменника «воздух-воздух» ограничена удельной теплоемкостью и разницей температур воздуха, а рекуперация тепла может быть не такой высокой, как у системы теплового насоса, но его преимущество заключается в простоте конструкции.

Rotary heat exchanger manufacturers

There are several well-known rotary heat exchanger manufacturers that provide high-efficiency solutions for HVAC, industrial, and energy recovery applications. Below are some leading companies:

1. Global Rotary Heat Exchanger Manufacturers

Heatex (Sweden) – Specializes in air-to-air rotary and plate heat exchangers for HVAC and industrial applications.
Klingenburg GmbH (Germany) – Offers rotary heat exchangers with advanced coatings for high humidity and corrosive environments.
Seibu Giken (Japan) – Known for its desiccant rotors and energy recovery wheels, ideal for pharmaceutical and cleanroom applications.
FläktGroup (Germany) – Supplies energy-efficient rotary heat exchangers for large commercial and industrial buildings.
REC Air Handling (Netherlands) – Provides customizable rotary heat exchangers for HVAC and industrial heat recovery.

2. China-Based Rotary Heat Exchanger Manufacturers

Hoval – Specializes in plate and rotary heat exchangers for HVAC and industrial processes.
Holtop – Manufactures energy recovery ventilation (ERV) systems with rotary heat exchangers.
Zibo Qiyu – Offers aluminum-based rotary heat exchangers for air handling systems.
Shanghai Shenglin – Produces rotary wheels for air-to-air heat recovery applications.

3. Key Features to Consider

Material – Aluminum, coated surfaces (for corrosion resistance), or desiccant-coated wheels (for humidity control).
Эффективность – High heat recovery efficiency (up to 85%) for energy savings.
Приложение – Industrial HVAC, cleanrooms, pharmaceutical, or general ventilation.
Customization – Size, coatings, and integration with existing systems.

Нужна помощь?
ru_RUРусский