태그 아카이브 열교환 기

올바른 열교환기를 선택하려면 어떻게 해야 하나요?

Choosing the right heat exchanger involves evaluating several key factors to ensure it meets your application’s needs while optimizing efficiency, cost, and performance. Here’s a concise guide to help you make an informed decision:

  1. Understand Your Application Requirements:
    • Fluid Properties: Identify the fluids involved (e.g., water, oil, or corrosive fluids) and their characteristics, such as viscosity, particulate content, and corrosiveness. Viscous fluids or those with particulates may require tubular or scraped-surface heat exchangers, while low-viscosity fluids work well with plate heat exchangers.
    • Thermal Requirements: Determine the required heat transfer rate, inlet and outlet temperatures, and whether phase changes (e.g., evaporation or condensation) are involved. Calculate the Initial Temperature Difference (ITD) by subtracting the incoming cold fluid temperature from the incoming hot fluid temperature to assess thermal performance needs.
    • Flow Rates: Assess the flow rates of both fluids (e.g., liters per minute or gallons per minute) to ensure the heat exchanger can handle the throughput. For large-scale production, prioritize energy efficiency; for small batches, focus on minimizing product losses.
  2. Select the Appropriate Type:
    • 판형 열교환기: Ideal for low to medium pressure, high-efficiency applications with simple fluids like milk or thin oils. They offer high heat transfer rates, compact size, and easy maintenance but are limited by gasket durability at high temperatures (up to 350°F) or pressures (up to 370 psi).
    • Shell-and-Tube Heat Exchangers: Suitable for high-pressure and high-temperature applications (e.g., oil and gas, chemical processing). They are robust and cost-effective but less efficient than plate designs and harder to clean.
    • Scraped-Surface Heat Exchangers: Best for highly viscous fluids, fluids with large particulates, or processes involving phase changes (e.g., ice cream, sauces). They are expensive but effective for continuous processing and fouling prevention.
    • Other Types: Consider air-cooled or compact heat exchangers for specific applications like automotive or space-constrained environments.
  3. Evaluate Operating Conditions:
    • Pressure and Temperature: Ensure the heat exchanger can handle the maximum design pressure and temperature. For high-pressure/temperature applications, shell-and-tube or specialized designs like dimple plates may be necessary.
    • Fouling and Maintenance: Assess the fouling potential of your fluids (e.g., sedimentation, biological growth). Plate heat exchangers are easier to clean, while scraped-surface designs reduce fouling in viscous applications. Specify fouling factors (e.g., 0.0002–0.001 m²K/W for tubular designs) to account for performance degradation.
    • Pressure Drop: Calculate allowable pressure drop based on your system’s constraints (e.g., pump capacity). Designs with lower pressure drops, like shell-and-tube, can save energy.
  4. Consider Size and Space Constraints:
    • Evaluate available space for installation, maintenance, and potential expansion. Plate heat exchangers are compact and modular, allowing easy capacity adjustments by adding/removing plates. Oversizing by 30–40% can enable heat recovery if space permits.
    • For tight spaces, consider compact heat exchangers with high surface area-to-volume ratios (e.g., ≥700 m²/m³ for gas-to-gas applications).
  5. Material Selection:
    • Choose materials compatible with your fluids and operating conditions:
      • Stainless Steel: Durable, corrosion-resistant, and easy to clean, ideal for most applications.
      • Titanium: Lightweight, non-corrosive, suitable for extreme temperatures or chemical processes but costly.
      • Aluminum: Cost-effective for industrial applications but less corrosion-resistant.
      • Graphite or Ceramic: For highly corrosive or high-temperature fluids.
    • Ensure material compatibility with gaskets in plate heat exchangers to avoid failures.
  6. Cost and Efficiency:
    • Balance initial investment with long-term operational costs. Plate heat exchangers are typically the least expensive and most energy-efficient, while scraped-surface designs are costlier but necessary for specific applications.
    • Focus on total cost of ownership (TCO) over 3–4 years. Energy-efficient designs often have quick payback periods (e.g., <1 year for large-scale operations).
    • Consider eco-friendly options like ambient cooling for electrical enclosures to reduce energy costs.
  7. Consult Manufacturers and Use Tools:
    • Use manufacturer-provided comparison charts or performance graphs to match models to your thermal and flow requirements (e.g., W/°C for specific flow rates).
    • Seek professional advice to validate calculations and ensure the design meets safety and performance standards. Manufacturers can assist with sizing, installation, and maintenance planning.
  8. Avoid Common Pitfalls:
    • Don’t oversize unnecessarily if space is limited, as it increases costs without benefits.
    • Avoid selecting a design based solely on cost or tradition (e.g., assuming tubular is best for viscous fluids). Evaluate newer technologies like corrugated tube designs for better performance.
    • Ensure the heat exchanger aligns with process goals (e.g., pasteurization, cooling) to avoid quality issues or incomplete processing.

Example Calculation: For cooling a liquid from 80°C to 40°C using air at 21°C with a flow rate of 2 gpm, calculate ITD (80°C – 21°C = 59°C). Refer to performance graphs to select a model meeting the required heat transfer rate (e.g., 56 W/°C for a copper heat exchanger). Check pressure drop (e.g., 8 psi at 2 gpm) to ensure pump compatibility.

Recommendation: Start by defining your fluid properties, thermal needs, and space constraints. For simple fluids and space-limited setups, prioritize plate heat exchangers. For high-viscosity or particulate-laden fluids, consider scraped-surface or tubular designs. Consult with manufacturers to finalize the model and size, ensuring it aligns with your process and budget.

가스-가스 플레이트 열교환기란 무엇입니까?

가스-가스 플레이트 열교환기란 무엇입니까?

Gas-Gas Plate Heat Exchanger

가스-가스 플레이트 열교환기

가스-가스 판형 열교환기는 고온 배기 가스에서 열을 회수하여 유입되는 차가운 공기 또는 기타 가스 흐름으로 전달하도록 설계된 고효율 열전달 장치입니다. 기존 열교환기와 달리, 콤팩트한 판형 구조로 열전달 표면적이 극대화되어 60%에서 80%까지의 열효율을 달성합니다. 이 열교환기는 얇은 주름진 금속판(일반적으로 스테인리스강)으로 구성되어 고온 가스와 저온 가스를 위한 별도의 통로를 형성하여 가스 흐름이 섞이지 않고 열이 판을 통과할 수 있도록 합니다.

이 기술은 하드웨어 부품에 사용되는 초음파 세척기의 건조 시스템과 같이 상당한 폐열을 발생시키는 산업 공정에 특히 적합합니다. 가스-가스 판형 열교환기는 이 열을 포집하고 재활용함으로써 가열 공정에 필요한 에너지를 절감하고 운영 비용과 탄소 배출량을 줄입니다.

보일러에서 열교환기는 어떻게 작동합니까?

에이 보일러의 열교환기 연소 가스의 열을 시스템 내 순환하는 물로 전달합니다. 작동 원리는 다음과 같습니다.

  1. 연소가 발생합니다: 보일러는 연료원(천연가스, 석유, 전기 등)을 연소시켜 뜨거운 연소 가스를 생성합니다.

  2. 열교환기로의 열전달: 이러한 뜨거운 가스는 열교환기를 통해 흐릅니다. 열교환기는 일반적으로 강철, 구리 또는 알루미늄으로 만든 코일형 또는 지느러미형 금속 튜브나 일련의 판입니다.

  3. 물 순환: 중앙 난방 시스템의 차가운 물은 열교환기를 통해 펌핑됩니다.

  4. 열 흡수: 뜨거운 가스가 열교환기 표면을 지나갈 때, 열은 금속을 통해 내부의 물로 전도됩니다.

  5. 온수 배달: 이제 가열된 물은 보일러 유형(콤비 또는 시스템 보일러)에 따라 라디에이터나 온수 수도꼭지로 순환됩니다.

  6. 가스 배출: 냉각된 연소 가스는 연도를 통해 배출됩니다.

~ 안에 응축 보일러, 거기에있다 추가 스테이지:

  • 초기 열전달 후 배기가스에 남은 열은 다음과 같이 사용됩니다. preheat incoming cold water, extracting even more energy and improving efficiency. This process often creates condensate (water), which is drained from the boiler.

열교환기는 습기를 제거합니까?

일반적인 공기-공기 열교환기는 주로 두 기류 사이에서 열을 전달하며, 습기를 직접 제거하지는 않습니다. 기류는 분리되어 있기 때문에, 한 기류의 습기(습기)는 일반적으로 해당 기류 내에 머물러 있습니다. 그러나 열교환기의 유형에 따라 미묘한 차이가 있습니다.

  1. 현열교환기: 이러한 장치(예: 대부분의 판형 또는 열파이프형 열교환기)는 열만 전달하고 수분은 전달하지 않습니다. 유입 및 유출 공기의 습도는 변하지 않지만, 온도 변화로 인해 상대 습도가 약간 변동할 수 있습니다. (따뜻한 공기는 더 많은 수분을 함유할 수 있으므로 유입 공기를 가열하면 상대 습도가 낮아질 수 있습니다.)
  2. 엔탈피(총 에너지) 교환기: 회전식 휠이나 특정 멤브레인 기반 열교환기와 같은 일부 첨단 설계는 열과 습기를 모두 전달할 수 있습니다. 이러한 환기 장치를 흡습성 또는 엔탈피 회수 환기 장치(ERV)라고 합니다. 코어 소재 또는 휠은 습한 기류(예: 따뜻하고 습한 실내 공기)에서 습기를 흡수하여 건조한 기류(예: 차갑고 건조한 실외 공기)로 전달하여 습도를 어느 정도 효과적으로 관리합니다.
  3. 응축 효과: 특정 조건에서 열교환기가 습한 공기를 이슬점 이하로 냉각하면 열교환기 표면에 결로가 발생하여 해당 기류의 수분이 일부 제거될 수 있습니다. 이는 부수적인 현상이며 주요 기능이 아니며, 배수 시스템이 필요합니다.

따라서 일반적인 열교환기는 수분 전달용으로 설계된 엔탈피형 ERV(열교환기)가 아니거나 결로가 발생하지 않는 한 습기를 제거하지 못합니다. 습도 조절이 목표라면 ERV나 별도의 제습 시스템이 필요합니다.

ZiBo QiYu 제조업체

ZIBO QIYU AIR CONDITION ENERGY RECOVERY EQUIPMENT CO., LTD. We have kinds of air to air heat exchangers, such as AHU, HRV, heat tube heat exchangers, rotary heat exchangers, steam heating coil, surface air cooler.

All these products can be customized, you just need to tell me your requirements, and we have professional model selection software, we can help you choose the most suitable model.

If you're interested in our products, you can look through our website to get further information.

Website:https://www.huanrexi.com

가축 환기에 공기-공기 열 회수 교환기의 적용

그만큼 공기 대 공기 열 회수 교환기 에너지 효율을 높이고 최적의 실내 환경을 유지함으로써 가축 환기 산업에서 중요한 역할을 합니다. 배기 공기의 폐열을 회수하도록 설계된 이 열교환기는 축사에서 배출되는 따뜻하고 탁한 공기의 열에너지를 유입되는 신선하고 차가운 공기로 전달하며, 두 공기가 섞이지 않습니다. 일관된 온도 조절과 공기질이 중요한 양계장, 돼지 축사 및 기타 사육 환경에서, 이 열교환기는 겨울철에는 신선한 공기를 예열하여 난방비를 절감하고, 여름철에는 효과적인 열 조절을 통해 열 스트레스를 완화합니다. 일반적으로 알루미늄이나 스테인리스 스틸과 같은 내식성 소재로 제작되어 가축 사육 환경에서 흔히 발생하는 습하고 암모니아가 풍부한 환경을 견뎌냅니다. 환기 시스템에 통합되면 이 열교환기는 에너지 소비를 줄일 뿐만 아니라 지속 가능한 농업 관행을 지원하여 동물 복지와 운영 효율성을 보장합니다. 특히 비용 효율성과 환경적 책임의 균형을 추구하는 대규모 사육 환경에서 매우 유용합니다.

Air-to-Air Heat Recovery Exchanger

호텔 및 세탁 산업에서 린넨 건조를 위한 판형 열교환기

Application principle:
During the washing and drying process of linen, steam or hot water enters one side of the plate heat exchanger as a high-temperature fluid, while the air to be heated (for drying) enters the other side as a low-temperature fluid. Through a plate heat exchanger, the high-temperature fluid transfers heat to the low-temperature fluid, causing the air temperature to rise and achieving the purpose of preheating.
Plate heat exchangers have good thermal conductivity and can effectively transfer the heat of steam to linen, improving thermal efficiency. This means that the drying process of linen can be completed faster or energy consumption can be reduced with the same energy consumption.
Structural design: The plate heat exchanger is composed of multiple thin metal plates that form sealed channels between them. Metal plates are usually made of materials with good thermal conductivity, such as aluminum foil, copper foil, or stainless steel foil.
에너지 절약 및 환경 보호: By recycling and reusing heat energy, plate heat exchangers can reduce steam consumption, lower energy consumption, and protect the environment. This is particularly important for places such as hotels, guesthouses, hospitals, and the laundry industry that require a large amount of washing and drying of linen.
The application principle of the plate heat exchange core of the linen washing and drying heat exchanger is based on the basic principles of heat conduction and convection, and efficient heat exchange is achieved through reasonable structural design and material selection.

슬러지 건조용 열교환기

Air heat exchangers play a crucial role in the low-temperature drying process of sludge. Based on the thermal conductivity and corrosion resistance of epoxy aluminum foil material, efficient low-temperature drying of sludge is achieved by optimizing the heat exchange process.


작동 원리:
It uses a heat pump system to cool and dehumidify the humid air from the drying chamber through an evaporator, while heating and reheating it through a condenser to produce dry hot air that is sent into the drying chamber.
Application effect:
Epoxy aluminum foil, as a material for heat exchangers, has efficient thermal conductivity that helps to quickly transfer heat and improve heat exchange efficiency. Meanwhile, due to its corrosion resistance, it can effectively resist the erosion of corrosive gases and substances that may be generated during the sludge drying process, extending the service life of the equipment.
The application principle of the low-temperature sludge dryer heat exchanger is mainly based on the thermal conductivity and corrosion resistance of epoxy aluminum foil material. By optimizing the heat exchange process, efficient low-temperature sludge drying can be achieved.

쇠고기와 돼지고기 건조용 판형 열교환기

작동 원리:
During the drying process of beef and pork, the high-temperature moisture (exhaust gas) generated is transferred to the fresh air entering the system through the heat exchange core. In this way, fresh air is preheated before entering the drying area, thereby reducing the energy consumption required to heat the fresh air.
구조적 특징:
High quality hydrophilic aluminum foil is commonly used as a heat transfer conductor, with good heat transfer efficiency and a long service life (generally up to 8-10 years)
The channels for fresh air and exhaust gases are arranged in a cross pattern, separated by aluminum foil to ensure the cleanliness of the fresh air and prevent the spread of any odors and moisture.
All connections are sealed with sealant and treated with biting edge flowing adhesive to ensure the airtightness of the heat exchanger.
성능상의 이점:
The heat exchange efficiency can reach up to 90%, which can significantly reduce energy consumption.
구조가 컴팩트하고 부피가 작아 다양한 경우에 설치 및 사용에 적합합니다.
유지관리가 쉽고, 청소가 간편하며, 수돗물이나 중성세제로 직접 청소할 수 있습니다.

Total heat recovery ventilation technology for home decoration fresh air system

The fresh air system is a common air treatment equipment in modern homes and commercial buildings, which can provide a continuous supply of fresh air and discharge indoor polluted air. In the fresh air system, heat recovery efficiency is a key indicator, and high heat recovery efficiency means that the system can more effectively recover energy during the ventilation process, thereby reducing energy consumption. Total heat exchange technology can recover heat and humidity while ventilating, reducing energy loss caused by ventilation and achieving energy conservation and consumption reduction.

Total heat recovery ventilation technology
Total heat recovery refers to the process in which a fresh air system, while introducing fresh outdoor air, recovers the heat and humidity from the discharged indoor air through a heat exchanger for heating or cooling the incoming fresh air. A total heat exchanger is an energy-saving device in a fresh air system that can exchange heat and humidity without mixing fresh air and exhaust air.
The application of total heat exchange technology not only reduces reliance on air conditioning and heating equipment, but also lowers overall energy consumption, in line with the concept of sustainable development. Choosing a suitable fresh air system can not only improve living comfort, but also achieve the goals of energy conservation, emission reduction, and carbon neutrality.

도움이 필요하신가요?
ko_KR한국어