태그 아카이브 Cross Flow Heat Exchanger

교차 흐름 열교환기는 어떻게 작동합니까?

에이 교차 흐름 열교환기 두 유체가 서로 직각(수직)으로 흐르도록 하여 작동하며, 일반적으로 한 유체는 튜브를 통해 흐르고 다른 유체는 튜브 바깥쪽을 따라 흐릅니다. 핵심 원리는 열이 튜브 벽을 통해 한 유체에서 다른 유체로 전달된다는 것입니다. 작동 원리를 단계별로 설명하면 다음과 같습니다.

구성 요소:

  1. 튜브 사이드: 유체 중 하나가 튜브를 통해 흐릅니다.
  2. 쉘 사이드: 다른 유체는 튜브 번들을 가로질러 튜브 내부 유체의 흐름에 수직인 방향으로 흐릅니다.

작업 과정:

  1. 유체 유입구: 두 유체(뜨거운 유체와 차가운 유체) 모두 서로 다른 입구를 통해 열교환기로 들어갑니다. 한 유체(뜨거운 유체)는 관을 통해 들어가고, 다른 유체(차가운 유체)는 관 바깥 공간으로 들어갑니다.
  2. 유체 흐름:

    • 튜브 내부를 흐르는 유체는 직선 경로나 약간 꼬인 경로로 움직입니다.
    • 튜브 외부로 흐르는 유체는 튜브를 수직 방향으로 가로지릅니다. 이 유체의 경로는 교차류(튜브를 직접 가로지르는 흐름)일 수도 있고, 교차류와 역류가 혼합된 형태처럼 더 복잡한 형태를 가질 수도 있습니다.

  3. 열전달:

    • 뜨거운 유체의 열은 튜브 벽으로 전달되고, 그 후 튜브를 가로질러 흐르는 차가운 유체로 전달됩니다.
    • 열전달 효율은 두 유체 사이의 온도차에 따라 달라집니다. 온도차가 클수록 열전달 효율이 높아집니다.

  4. 콘센트: 열 전달 후, 차가워진 뜨거운 유체는 한 쪽 출구로 나가고, 따뜻해진 차가운 유체는 다른 쪽 출구로 나갑니다. 이 열교환 과정은 두 유체가 열교환기를 통과할 때 온도 변화를 초래합니다.

디자인 변형:

  • 단일 패스 크로스플로우: 한 유체는 튜브를 가로질러 한 방향으로 흐르고, 다른 유체는 튜브를 통해 이동합니다.
  • 멀티패스 크로스플로우: 튜브 내부의 유체는 여러 번 흐르면서 외부 유체와의 접촉 시간을 늘리고 열 전달을 개선할 수 있습니다.

효율성 고려 사항:

  • 직교류 열교환기는 일반적으로 역류 열교환기보다 효율이 낮습니다. 두 유체 사이의 온도 구배가 열교환기 길이 방향으로 감소하기 때문입니다. 역류 열교환기에서는 유체의 온도 차이가 더 일정하게 유지되어 열전달 효율이 더 높습니다.
  • 그러나 교차 흐름 열교환기는 설계가 더 쉽고 공간이 제한적이거나 유체를 분리해야 하는 상황(예: 공기 대 공기 열교환기)에서 자주 사용됩니다.

응용 프로그램:

  • 공랭식 열교환기 (HVAC 시스템이나 자동차 라디에이터와 같은)
  • 전자 장비의 냉각.
  • 환기 시스템용 열교환기.

따라서 역류 열교환기만큼 열 효율이 좋지는 않지만, 횡류 설계는 다용도로 활용 가능하며 단순성이나 공간 절약이 중요할 때 일반적으로 사용됩니다.

교차 흐름 열교환기의 온도 프로파일

다음은 이에 대한 세부 사항입니다. 온도 프로파일 ~을 위해 교차 흐름 열교환기, 특히 언제 두 유체는 섞이지 않습니다:


🔥 교차 흐름 열교환기 - 두 유체가 섞이지 않음

➤ 흐름 배열:

  • 한 유체는 수평으로 흐릅니다(예를 들어, 튜브 속의 뜨거운 유체).
  • 다른 하나는 수직으로 흐릅니다(예를 들어, 튜브를 가로지르는 차가운 공기).
  • 유체 내부나 유체 간에 혼합이 없습니다.


📈 온도 프로필 설명:

▪ 뜨거운 유체:

  • 입구 온도: 높은.
  • 흐르듯이, 열을 잃다 차가운 액체에.
  • 출구 온도: 입구보다 낮지만 접촉 시간이 다양하기 때문에 교환기 전체에 걸쳐 균일하지 않습니다.

▪ 차가운 유체:

  • 입구 온도: 낮은.
  • 뜨거운 관을 흐르면서 열을 얻습니다.
  • 출구 온도: 더 높지만, 교환기마다 다릅니다.

🌀 교차 흐름과 혼합이 없기 때문에:

  • 교환기의 각 지점은 다음을 봅니다. 다른 온도 구배각 유체가 표면과 접촉한 시간에 따라 달라집니다.
  • 온도 분포는 비선형 역류나 병렬류 교환기보다 더 복잡합니다.


📊 일반적인 온도 프로필(도식적 레이아웃):

                ↑ 차가운 유체가 들어옴

높음 │ ┌──────────────┐
온도 │ │ │
│ │ │ → (오른쪽)에 뜨거운 유체가 들어옴
│ │ │
↓ └──────────────┘
차가운 유체가 나옵니다 ← 뜨거운 유체가 나옵니다

⬇ 온도 곡선:

  • 차가운 액체 점차 뜨거워집니다. 곡선은 낮은 곳에서 시작하여 위쪽으로 올라갑니다.
  • 뜨거운 유체 식어감 — 높은 곳에서 시작해서 아래로 휘어짐.
  • 곡선은 평행하지 않다, 그리고 대칭적이지 않다 교차 흐름의 형태와 다양한 열교환율로 인해.


🔍 효율성:

  • 효과는 다음에 따라 달라집니다. 열용량 비율 그리고 NTU(이송 단위 수).
  • 일반적으로 덜 효율적 역류보다 더 효율적이다 평행 흐름보다.

두 유체가 혼합되지 않은 교차 흐름 열교환기

에이 두 유체가 혼합되지 않은 교차 흐름 열교환기 두 유체(뜨겁고 차가운 유체)가 서로 수직(90°)으로 흐르는 열교환기 유형을 말합니다. 두 유체 모두 내부적으로 또는 다른 유체와 섞이지 않습니다.. 이 구성은 다음과 같은 응용 프로그램에서 일반적입니다. 공기 대 공기 열 회수 또는 자동차 라디에이터.

주요 특징:

  • 교차 흐름: 두 유체는 서로 직각으로 움직입니다.
  • 혼합되지 않은 유체: 뜨겁거나 차가운 유체는 모두 단단한 벽이나 핀으로 각각의 흐름 통로에 갇혀서 혼합이 방지됩니다.
  • 열전달: 유체를 분리하는 단단한 벽이나 표면에 발생합니다.

건설:

일반적으로 다음이 포함됩니다.

폐쇄형 채널 두 번째 유체(예: 물이나 냉매)가 튜브 내부로 흐릅니다.

튜브 또는 지느러미 표면 한 가지 유체(예: 공기)가 튜브를 가로질러 흐르는 곳입니다.

일반적인 응용 프로그램:

  • 자동차의 라디에이터
  • 에어컨 시스템
  • 산업용 HVAC 시스템
  • 열 회수형 인공호흡기(HRV)

장점:

  • 유체 간 오염 없음
  • 간단한 유지관리 및 청소
  • 분리되어야 하는 가스 및 유체에 적합합니다.

심폐소생술에 사용되는 교차흐름 열교환기

A cross-flow heat exchanger in a cardiopulmonary context, such as during cardiopulmonary bypass (CPB) procedures, is a critical component used to regulate a patient’s blood temperature. These devices are commonly integrated into heart-lung machines to warm or cool blood as it’s circulated outside the body during open-heart surgeries or other procedures requiring temporary heart and lung support.

작동 원리

In a cross-flow heat exchanger, two fluids—typically blood and a heat transfer medium (like water)—flow perpendicular to each other, separated by a solid surface (e.g., metal or polymer plates/tubes) that facilitates heat transfer without mixing the fluids. The design maximizes heat exchange efficiency while maintaining biocompatibility and minimizing blood trauma.

  • Blood Flow Path: Oxygenated blood from the heart-lung machine flows through one set of channels or tubes.
  • Water Flow Path: Temperature-controlled water flows through an adjacent set of channels in a perpendicular direction, either warming or cooling the blood depending on the clinical need (e.g., inducing hypothermia or rewarming).
  • 열전달: The temperature gradient between the blood and water drives heat exchange through the conductive surface. The cross-flow arrangement ensures a high heat transfer rate due to the constant temperature difference across the exchanger.

Key Features

  1. Biocompatibility: Materials (e.g., stainless steel, aluminum, or medical-grade polymers) are chosen to prevent clotting, hemolysis, or immune reactions.
  2. Compact Design: Cross-flow exchangers are space-efficient, crucial for integration into CPB circuits.
  3. Efficiency: The perpendicular flow maximizes the temperature gradient, improving heat transfer compared to parallel-flow designs.
  4. Sterility: The system is sealed to prevent contamination, with disposable components often used for single-patient procedures.
  5. Control: Paired with a heater-cooler unit, the exchanger maintains precise blood temperature (e.g., 28–32°C for hypothermia, 36–37°C for normothermia).

Applications in Cardiopulmonary Procedures

  • Hypothermia Induction: During CPB, the blood is cooled to reduce metabolic demand, protecting organs like the brain and heart during reduced circulation.
  • Rewarming: After surgery, the blood is gradually warmed to restore normal body temperature without causing thermal stress.
  • Temperature Regulation: Maintains stable blood temperature in extracorporeal membrane oxygenation (ECMO) or other long-term circulatory support systems.

Design Considerations

  • Surface Area: Larger surface areas improve heat transfer but must balance with minimizing priming volume (the amount of fluid needed to fill the circuit).
  • Flow Rates: Blood flow must be turbulent enough for efficient heat transfer but not so high as to damage red blood cells.
  • Pressure Drop: The design minimizes resistance to blood flow to avoid excessive pump pressure.
  • Infection Control: Stagnant water in heater-cooler units can harbor bacteria (e.g., Mycobacterium chimaera), necessitating strict maintenance protocols.

Example

A typical cross-flow heat exchanger in a CPB circuit might consist of a bundle of thin-walled tubes through which blood flows, surrounded by a water jacket where temperature-controlled water circulates in a perpendicular direction. The exchanger is connected to a heater-cooler unit that adjusts water temperature based on real-time feedback from the patient’s core temperature.

Challenges and Risks

  • Hemolysis: Excessive shear stress from turbulent flow can damage blood cells.
  • Thrombogenicity: Surface interactions may trigger clot formation, requiring anticoagulation (e.g., heparin).
  • Air Embolism: Improper priming can introduce air bubbles, a serious risk during bypass.
  • Infections: Contaminated water in heater-cooler units has been linked to rare but severe infections.

가마 폐열 회수 및 재사용 시스템 - 가스 스테인리스 스틸 교차 흐름 열교환기 계획

The kiln waste heat recovery and reuse system aims to fully utilize the high-temperature heat in the kiln exhaust gas, and achieve a win-win situation of energy conservation and environmental protection through gas stainless steel cross flow heat exchangers. The core of this solution lies in the use of a stainless steel cross flow heat exchanger, which efficiently exchanges heat between high-temperature exhaust gas and cold air, generating hot air that can be reused.

Working principle: The exhaust gas and cold air flow in a cross flow manner inside the heat exchanger and transfer heat through the stainless steel plate wall. After releasing heat from exhaust gas, it is discharged. Cold air absorbs the heat and heats up into hot air, which is suitable for scenarios such as assisting combustion, preheating materials, or heating.

장점:

Efficient heat transfer: The cross flow design ensures a heat transfer efficiency of 60% -80%.
Strong durability: Stainless steel material is resistant to high temperatures and corrosion, and can adapt to complex exhaust environments.
Flexible application: Hot air can be directly fed back to the kiln or used for other processes, with significant energy savings.
System process: Kiln exhaust gas → Pre treatment (such as dust removal) → Stainless steel heat exchanger → Hot air output → Secondary utilization.

This solution is simple and reliable, with a short investment return cycle, making it an ideal choice for kiln waste heat recovery, helping enterprises reduce energy consumption and improve efficiency.

데이터센터 간접 증발 냉각 시스템에 교차흐름 열교환기 적용

The application of cross flow heat exchangers in Indirect Evaporative Cooling (IDEC) systems in data centers is mainly reflected in efficient heat exchange, reducing energy consumption, and improving data center cooling efficiency. Here are its key roles and advantages:

  1. Basic working principle
    Cross flow heat exchanger is a type of heat exchange device whose structure allows two streams of air to cross each other while maintaining physical isolation. In indirect evaporative cooling systems in data centers, it is typically used for heat exchange between cooling air and outdoor ambient air without direct mixing.
    The workflow is as follows:
    The primary air (data center return air) exchanges heat with the secondary air (external ambient air) through one side of the heat exchanger.
    The secondary air evaporates and cools in the humidification section, reducing its own temperature, and then absorbs heat in the heat exchanger to cool the primary air.
    After the primary air is cooled down, it is sent back to the data center to cool down the IT equipment.
    The secondary air is ultimately discharged outdoors without entering the interior of the data center, thus avoiding the risk of pollution.
  2. Advantages in Data Centers
    (1) Efficient and energy-saving, reducing cooling demand
    Reduce cooling load: By using cross flow heat exchangers, data centers can utilize external air cooling instead of relying on traditional mechanical refrigeration (such as compressors).
    Improve PUE (Power Usage Effectiveness): Reduce the operating time of mechanical cooling equipment, lower energy consumption, and make PUE values closer to the ideal state (below 1.2).
    (2) Completely physically isolated to avoid contamination
    Cross flow heat exchangers can ensure that outdoor air does not come into direct contact with the air inside the data center, avoiding pollution, dust, or humidity affecting IT equipment. They are suitable for data centers with high air quality requirements.
    (3) Suitable for various climatic conditions
    In dry or warm climates, indirect evaporative cooling systems are particularly effective and can significantly reduce the cooling costs of data centers.
    Even in areas with high humidity, optimizing the design of heat exchangers can improve heat exchange efficiency.
    (4) Reduce water resource consumption
    Compared to direct evaporative cooling (DEC), indirect evaporative cooling does not require direct spraying of water into the air of the data center, but rather indirect cooling through a heat exchanger, thus reducing water loss.
  3. Applicable scenarios
    Cross flow heat exchangers are widely used in the following types of data centers:
    Hyperscale Data Center: Requires efficient and energy-saving cooling solutions to reduce operating costs.
    Cloud computing data center: requires high PUE values and seeks more sustainable cooling methods.
    Edge Data Center: typically located in harsh environments, requiring efficient and low maintenance cooling systems.
  4. Challenge and Optimization Plan
    Heat exchanger size and efficiency: Larger cross flow heat exchangers can improve heat exchange efficiency, but they also increase the footprint, so optimization design is needed, such as using aluminum or composite material heat exchangers to improve heat exchange efficiency.
    Scaling and maintenance: Due to humidity changes, heat exchangers may experience scaling issues, requiring regular cleaning and the use of corrosion-resistant coatings to extend their lifespan.
    Control system optimization: Combined with intelligent control, dynamically adjust the working mode of the heat exchanger based on external environmental temperature, humidity, and data center load conditions to improve system adaptability.
  5. Future Development Trends
    New efficient heat exchange materials, such as nano coated heat exchangers, further improve heat exchange efficiency.
    Combined with AI intelligent control system, dynamically adjust the heat exchange according to the real-time load of the data center.
    Combining liquid cooling technology to further improve heat dissipation efficiency in high-density server rooms.

Cross flow heat exchangers play an important role in the indirect evaporative cooling system of data centers, providing efficient heat transfer, reducing energy consumption, minimizing pollution, and improving equipment reliability. They are currently one of the important technologies in the field of data center cooling, especially suitable for large-scale, high-efficiency data centers.

도움이 필요하신가요?
ko_KR한국어