Archivo de categorías Recuperación de calor de secado

Modernización de sistemas de recuperación de calor de escape para máquinas tensoras textiles mediante intercambiadores de calor de placas aire-aire de acero inoxidable

Textile stenter machines generate high-temperature exhaust containing oil mist, fiber dust, additives, and high humidity, which often leads to corrosion, fouling, and unstable system operation. To address these challenges, a full stainless-steel air-to-air plate heat exchanger is used for exhaust heat recovery, integrating vertical exhaust channels, flat-plate passage structures, vertical spray washing, and a bottom condensate/ sludge settling tank. These optimized designs ensure reliable heat recovery specifically tailored for the textile printing and dyeing industry.


1. Application Background

Typical characteristics of stenter machine exhaust:
• Temperature 120–180°C
• Contains oil mist, fiber particles, chemical additives
• High moisture content; risk of condensation and corrosion
• Tendency to cause fouling and blockage in conventional heat exchangers

Aluminum exchangers cannot handle these harsh conditions. A full stainless-steel design with specialized structures is required to ensure long-term stable performance.


2. Key Structural Features

1. Full Stainless-Steel Heat Transfer Plates (304 / 316L)

• Excellent resistance to acidic condensate and dyeing chemicals
• High thermal and mechanical stability at elevated temperatures
• Supports high-frequency washing without deformation
• Considerably longer service life than aluminum plates

2. Flat Exhaust Passage Design

• Smooth, wide flow channels prevent fiber and oil mist accumulation
• Extended maintenance intervals
• Lower pressure drop, ideal for the large airflow of stenter machines

3. Vertical Exhaust Flow (L-Shaped Flow Path)

• Exhaust flows vertically downward or from top-side down
• Gravity assists removal of oil droplets and particles
• Reduces fouling on plate surfaces and prolongs cleaning cycles
• Enhances drainage efficiency during spray washing

4. Vertical Spray Cleaning System

• Periodic spray washing removes oil, fiber dust, and chemical residue
• Prevents fouling and restores heat transfer performance
• Allows online cleaning without dismantling the heat exchanger

5. Bottom Wastewater and Sludge Settling Tank

• Collects oil-contaminated water and fiber particles washed from plates
• Facilitates proper drainage and disposal
• Prevents recontamination of the heat exchanger
• Easy-to-clean structure, independent from the upper heat exchange area


3. Working Principle

  1. High-temperature exhaust enters the vertical flat channels.

  2. Heat is transferred through stainless-steel plates to the fresh-air side.

  3. Moisture condenses and carries oil/dirt downward into the settling tank.

  4. Fresh air absorbs waste heat and is preheated for reuse in the stenter machine or workshop ventilation.

  5. Cooled exhaust is then discharged to downstream treatment (RTO, carbon adsorption, fans) with reduced thermal load.

  6. The spray system periodically washes the exhaust channels to maintain stable efficiency.

Airflows remain completely separated to avoid cross-contamination.


4. Technical Advantages

1. Engineered Specifically for Textile Stenter Exhaust

Resistant to high temperature, corrosion, oil fumes, and fiber dust—solving long-standing issues in the dyeing and finishing industry.

2. Significant Energy Savings

Recovering exhaust heat to preheat fresh air can reduce gas, steam, or electric heating consumption by 20–35%.

3. Anti-Fouling, Stable Operation

Flat channels + vertical airflow + spray washing prevent blockages common in stenter exhaust systems.

4. Protects Downstream Equipment

Lower exhaust temperature reduces load on RTO, ducts, and fans, improving service life and reliability.

5. Low Maintenance

Routine spray cleaning and simple sludge removal are sufficient; no frequent disassembly required.


5. Typical Applications

• Textile heat-setting stenter machines
• Stretching, drying, and heat-setting production lines
• High-temperature exhaust with oil mist and fiber dust
• Pre-cooling and energy recovery before VOC treatment systems

Intercambiador de calor de bajo consumo BXB para secado de flores y hierbas

High-Efficiency Waste Heat Recovery · Lower Drying Energy Consumption · Improve Product Quality

During the drying process of flowers, petals, herbs, and aromatic plants, a large volume of hot and humid air is discharged. This exhaust contains substantial reusable heat. The BXB energy-saving heat exchanger captures the sensible heat and part of the latent heat from the exhaust air and uses it to preheat fresh air or return air, significantly reducing energy waste.


Principio de funcionamiento

  1. Hot exhaust enters the heat exchanger after leaving the dryer.

  2. Heat is transferred to fresh air, raising the fresh air temperature quickly.

  3. Exhaust air temperature and humidity drop after heat exchange, improving discharge conditions.

  4. Preheated fresh air returns to the dryer, reducing heater load and energy consumption.

This process is especially suitable for flower and herb drying, where stable temperature control is crucial for preserving color, fragrance, and quality.


Key Advantages

Ahorro de energía
The BXB structure provides large heat exchange surface and low air resistance, recovering a substantial portion of waste heat. Energy consumption can typically be reduced by twenty to forty percent.

Stable Drying Quality
Preheated air provides a more stable inlet temperature, reducing fluctuations and helping maintain natural color, aroma, and shape of dried flowers and herbs.

Improved Exhaust Conditions
After cooling, the exhaust becomes less humid and easier to discharge, reducing heat stress and moisture impact on the equipment.

Optimized for Low-Temperature Drying
Flower and herb drying requires gentle and precise temperature control. The BXB exchanger improves overall stability and enhances process controllability.

Flexible Installation
Suitable for both new drying lines and retrofit projects without altering the original drying process.


Application Fields

Flower drying
Rose petals, chamomile, lavender, jasmine, honeysuckle, and other delicate floral materials.

Herbal drying
Leaf-type or flower-type medicinal herbs requiring low-temperature drying to preserve active components.

Aromatic plant drying
Materials that need controlled temperature to retain fragrance.

Applicable to agricultural bases, herb processing factories, flower drying workshops, and food processing plants.

Aplicaciones de recuperación de calor industrial: Aprovechamiento del calor residual del secado de mariscos

1. Fuentes y características del calor residual del secado de mariscos y productos acuáticos

Los productos del mar y acuáticos (como camarones, pescado, mariscos, etc.) se suelen secar con equipos de secado por aire caliente, cuyas fuentes de calor consisten principalmente en calderas de carbón, de gas o sistemas de calefacción eléctrica. El proceso de secado genera una gran cantidad de gases de escape (gases de combustión) a alta temperatura y humedad, con temperaturas que suelen oscilar entre 50 y 100 °C, y que contienen una cantidad significativa de calor sensible y latente.

Calor sensible: El calor inherente a los propios gases de combustión a alta temperatura.

Calor latente: Calor liberado por la condensación del vapor de agua en los gases de combustión. Debido al alto contenido de humedad de los mariscos, la proporción de calor latente es particularmente significativa.

Características de los gases de escape: Alta humedad (contienen una gran cantidad de vapor de agua), pueden contener sales o materia orgánica, lo que puede causar corrosión en los equipos o acumulación de incrustaciones en las superficies de los intercambiadores de calor.

Si estos gases de escape se emiten directamente, no solo se desperdiciará energía térmica, sino que también aumentarán la contaminación térmica y la contaminación húmeda, afectando al medio ambiente.

2. Características del intercambiador de calor de placas BXB

El intercambiador de calor de placas BXB es un dispositivo de intercambio de calor compacto y de alta eficiencia, ampliamente utilizado en la recuperación de calor residual industrial, especialmente adecuado para el tratamiento de gases de escape a alta temperatura y humedad. Sus principales características incluyen:

Intercambio de calor de alta eficiencia: La estructura de placas proporciona una gran área de intercambio de calor, lo que resulta en una alta eficiencia de transferencia de calor con tasas de recuperación de hasta 60-80%.

Diseño compacto: En comparación con los intercambiadores de calor de carcasa y tubos, ocupa menos espacio, lo que lo hace adecuado para equipos de secado con limitaciones de espacio.

Resistencia a la corrosión: Se pueden seleccionar placas de acero inoxidable o aleación de titanio para resistir la corrosión producida por las sales y los compuestos orgánicos presentes en los gases de escape del secado de mariscos.

Mantenimiento sencillo: Su diseño desmontable facilita la limpieza para eliminar la acumulación de incrustaciones o depósitos en los gases de escape.

Baja caída de presión: La mínima resistencia del fluido reduce el consumo de energía del sistema.

3. Aplicación de intercambiadores de calor de placas BXB en el secado de mariscos y productos acuáticos

(1) Diseño del sistema

Diagrama del proceso:

Recogida de gases de escape: Los gases de escape a alta temperatura y alta humedad (50-100 °C) emitidos por los equipos de secado se transportan a través de tuberías hacia la entrada del lado caliente del intercambiador de calor de placas BXB.

Transferencia de calor: El calor sensible y latente de los gases de escape se transfiere a través de las placas del intercambiador de calor al medio del lado frío (normalmente aire frío o agua de refrigeración).

Utilización del calor:

Precalentamiento del aire de entrada: El calor recuperado se utiliza para precalentar el aire que entra en la cámara de secado, reduciendo así el consumo energético del calentador.

Producción de agua caliente: Se transfiere calor al agua para producir agua caliente para la limpieza de equipos o la calefacción de instalaciones.

Optimización de la deshumidificación: Tras el enfriamiento, la humedad de los gases de escape disminuye, mejorando así la eficiencia del sistema de deshumidificación.

Emisión de gases de escape: Los gases de escape enfriados (temperatura reducida a 40–50 °C) se tratan adicionalmente mediante el sistema de deshumidificación antes de su emisión, reduciendo la contaminación térmica.

Configuración del equipo:

Tipo de intercambiador de calor: Se seleccionan intercambiadores de calor de placas BXB, recomendándose placas de acero inoxidable 316L o aleación de titanio para prevenir la corrosión por sales.

Diseño de placas: Las placas corrugadas se utilizan para aumentar la turbulencia, mejorar la eficiencia de la transferencia de calor y reducir la incrustación.

Sistemas auxiliares: Equipados con dispositivos de filtración de gases de escape (para eliminar el polvo y los compuestos orgánicos) y un sistema de limpieza automático para prolongar la vida útil del intercambiador de calor.

(2) Principio de funcionamiento

El calor de los gases de escape se transfiere al fluido frío a través de las placas metálicas del intercambiador de calor de placas. Los estrechos canales entre las placas mejoran la eficiencia de la transferencia de calor.

Durante el proceso de intercambio de calor, parte del vapor de agua presente en los gases de escape a alta temperatura y alta humedad se condensa, liberando calor latente y mejorando aún más la eficiencia de recuperación de calor.

El medio del lado frío (como el aire o el agua) absorbe el calor, aumentando su temperatura, y puede utilizarse directamente para el precalentamiento del secado u otros requisitos del proceso.

(3) Escenarios de aplicación

Precalentamiento del aire entrante: Recuperar el calor de los gases de escape para calentar el aire fresco entrante a las salas de secado reduce el consumo de la fuente de calor.

Suministro de agua caliente: Utilización del calor recuperado para producir agua caliente a 40-60 °C para la limpieza de equipos de procesamiento de mariscos o para el suministro de agua caliente para uso industrial.

Optimización de la deshumidificación: La reducción de la humedad de los gases de escape mediante refrigeración y condensación mejora la eficiencia de la deshumidificación y potencia el rendimiento del secado.

4. Análisis de beneficios

Ahorro de energía y reducción de emisiones: El intercambiador de calor de placas BXB puede recuperar entre 50 y 801 TPM³ del calor residual de los gases de escape, lo que reduce el consumo de energía de secado entre 20 y 401 TPM³ y disminuye el consumo de combustible y las emisiones de CO₂. Por ejemplo, la recuperación de 601 TPM³ del calor residual puede reducir significativamente los costes energéticos por tonelada de procesamiento de mariscos.

Beneficios económicos: Al reducir el consumo de combustible y electricidad, la inversión en equipos generalmente recupera los costos en 1 o 2 años.

Beneficios ambientales: La reducción de la temperatura y la humedad de los gases de escape disminuye la contaminación térmica y por humedad, cumpliendo así con los requisitos de protección ambiental.

Calidad del producto: Mantener temperaturas de secado estables evita el sobrecalentamiento o la humedad excesiva, mejorando así la calidad del secado de los mariscos.

 

Traducido con DeepL.com (versión gratuita)

¿Qué es un intercambiador de calor de placas gas-gas?

¿Qué es un intercambiador de calor de placas gas-gas?

Gas-Gas Plate Heat Exchanger

Intercambiador de calor de placas gas-gas

Un intercambiador de calor de placas gas-gas es un dispositivo de transferencia de calor de alta eficiencia diseñado para recuperar el calor de los gases de escape a alta temperatura y transferirlo al aire frío entrante u otras corrientes de gas. A diferencia de los intercambiadores de calor tradicionales, su estructura compacta de placas maximiza la superficie de transferencia de calor, alcanzando eficiencias térmicas de 60% a 80%. El intercambiador consta de placas metálicas delgadas y corrugadas (generalmente de acero inoxidable) que crean canales separados para los gases calientes y fríos, permitiendo que el calor pase a través de las placas sin mezclar las corrientes de gas.

Esta tecnología resulta especialmente adecuada para procesos industriales que generan una cantidad significativa de calor residual, como los sistemas de secado en máquinas de limpieza ultrasónica utilizadas para componentes de hardware. Al capturar y reutilizar este calor, el intercambiador de calor de placas gas-gas reduce la energía necesaria para los procesos de calentamiento, disminuyendo así los costes operativos y las emisiones de carbono.

Sistemas de recuperación de calor residual para secadoras industriales

Los sistemas de recuperación de calor residual para secadores industriales capturan y reutilizan la energía térmica de los gases de escape calientes o corrientes de aire para mejorar la eficiencia energética, reducir los costos operativos y disminuir las emisiones. Estos sistemas son valiosos para procesos de secado de alto consumo energético en industrias como la química, alimentaria, cerámica y textil. A continuación, se describen las tecnologías clave, sus beneficios y los proveedores con sede en EE. UU., incluyendo su información de contacto.

Tecnologías clave para la recuperación de calor residual en secadores industriales
Los secadores industriales producen aire de escape caliente y húmedo que contiene calor sensible y latente. Los sistemas de recuperación extraen este calor para su reutilización. Algunas tecnologías comunes son:

Intercambiadores de calor aire-aire:
Transferencia de calor del aire caliente de escape al aire fresco entrante mediante intercambiadores de calor de placas o rotativos. Los precalentadores de aire de polímero resisten la corrosión y la acumulación de suciedad.
Aplicaciones: Precalentamiento del aire de entrada del secador, reduciendo el consumo de combustible hasta en 20%.
Ventajas: Sencillo, económico, de bajo mantenimiento.
Intercambiadores de calor aire-líquido:
Capturar el calor de los gases de escape para calentar líquidos para el calentamiento de procesos o el sistema HVAC de las instalaciones.
Aplicaciones: Calentamiento de agua de proceso en plantas de procesamiento de alimentos.
Ventajas: Reutilización versátil del calor.
Bombas de calor:
Aprovechar el calor residual de baja temperatura para elevarlo a temperaturas más altas y reutilizarlo.
Aplicaciones: Elevación de calor para el precalentamiento del aire de secado en industrias químicas o lácteas.
Ventajas: Alta eficiencia para fuentes de baja temperatura.
Intercambiadores de calor de contacto directo:
Los gases de escape calientes entran en contacto directo con un líquido para transferir calor, limpiando a menudo los contaminantes de los gases de combustión.
Aplicaciones: Recuperación de calor de hornos, estufas o secadoras.
Ventajas: Limpia los gases de escape a la vez que recupera el calor.
Calderas de recuperación de calor:
Convierta los gases de escape de alta temperatura en vapor para su uso en procesos o para la generación de energía.
Aplicaciones: Secadores de alta temperatura en el procesamiento de cerámica o minerales.
Ventajas: Genera vapor o electricidad.
Beneficios de la recuperación de calor residual para secadoras
Ahorro de energía: Mejoras en la eficiencia de hasta 20%.
Reducción de CO2: Cada aumento de eficiencia de 1% reduce las emisiones de CO2 en 1%.
Reducción de costes: Periodos de amortización desde meses hasta 3 años.
Cumplimiento medioambiental: Reduce las emisiones y la liberación de calor residual.
Optimización del proceso: Las temperaturas estables mejoran la calidad del producto.
Desafíos y soluciones
Incrustación y corrosión: Los intercambiadores de calor de polímero o los sistemas de limpieza en línea mitigan estos problemas.
Disponibilidad de disipador de calor: Requiere una fuente de calor cercana para una integración económica.
Diseño del sistema: La ingeniería a medida garantiza la compatibilidad.

¿Cómo funciona el intercambiador de calor aire-aire en la recuperación de calor del secado por aspersión?

En recuperación de calor del secado por pulverización, un intercambiador de calor aire-aire Se utiliza para recuperar el calor residual del aire caliente y húmedo que sale de la cámara de secado y transferirlo al aire fresco (pero más frío) que entra. Esto reduce significativamente la demanda energética del proceso de secado.

Cómo funciona:

  1. Recogida de aire de escape:

    • Después del secado por aspersión, el aire de escape caliente (a menudo entre 80 y 120 °C) contiene tanto calor como vapor de agua.

    • Este aire se extrae de la cámara y se envía al intercambiador de calor.

  2. Proceso de intercambio de calor:

    • El aire caliente de escape fluye a través de un lado del intercambiador de calor (a menudo fabricado con materiales resistentes a la corrosión debido a la posible adherencia o acidez leve).

    • Al mismo tiempo, el aire ambiente frío fluye por el otro lado, en un canal separado (configuración de flujo a contracorriente o flujo cruzado).

    • El calor se transfiere a través de las paredes del intercambiador del lado caliente al lado frío, sin mezclar las corrientes de aire.

  3. Precalentamiento del aire entrante:

    • El aire fresco entrante se precalienta antes de entrar en el calentador principal del secador por pulverización (quemador de gas o serpentín de vapor).

    • Este reduce el combustible o la energía necesarios para alcanzar la temperatura de secado deseada (normalmente 150–250 °C en la entrada).

  4. Postratamiento del aire de escape (opcional):

    • Tras la extracción del calor, el aire de escape más frío puede filtrarse o tratarse para eliminar el polvo y la humedad antes de ser liberado o utilizado posteriormente.

Beneficios:

  • Ahorro de energía: Reduce el consumo de combustible o vapor entre 10 y 30% dependiendo de la configuración.

  • Menores costos operativos: Un menor consumo de energía reduce los gastos en servicios públicos.

  • Impacto ambiental: Reduce las emisiones de CO₂ mejorando la eficiencia energética.

  • Estabilidad de la temperatura: Ayuda a mantener un rendimiento de secado constante.

¿Cómo funciona el intercambiador de calor aire-aire en la recuperación de calor NMP?

Un intercambiador de calor aire-aire en la recuperación de calor NMP transfiere energía térmica entre una corriente de aire de escape caliente, cargada de NMP, procedente de un proceso industrial y una corriente de aire fresco entrante más fría, mejorando la eficiencia energética en industrias como la fabricación de baterías.

El aire caliente de escape (p. ej., entre 80 y 160 °C) y el aire fresco más frío pasan por conductos separados o sobre una superficie conductora del calor (p. ej., placas, tubos o una rueda giratoria) sin mezclarse. El calor se transfiere del aire caliente de escape al aire fresco más frío mediante transferencia de calor sensible. Entre los tipos más comunes se encuentran los intercambiadores de calor de placas, los intercambiadores de calor rotativos y los intercambiadores de calor de tubos de calor.

Los diseños específicos para NMP emplean materiales resistentes a la corrosión, como acero inoxidable o plástico reforzado con fibra de vidrio, para soportar la agresividad del NMP. Una mayor separación entre las aletas o los sistemas de limpieza in situ evitan la acumulación de polvo o residuos. La condensación se controla para evitar obstrucciones o corrosión.

El aire caliente de escape transfiere calor al aire fresco, precalentándolo (p. ej., de 20 °C a 60-80 °C) y reduciendo así las necesidades energéticas de los procesos posteriores. El aire de escape enfriado (p. ej., a 30-50 °C) se envía a un sistema de recuperación de NMP (p. ej., por condensación o adsorción) para capturar y reciclar el disolvente. La eficiencia de recuperación de calor es de 60-951 T/T, según el diseño.

Esto reduce el consumo de energía entre un 15 % y un 30 % (TP3T), disminuye las emisiones de gases de efecto invernadero y mejora la recuperación de NMP al enfriar el aire de escape para facilitar la captura del disolvente. Problemas como la incrustación se solucionan con espacios más amplios, elementos extraíbles o sistemas de limpieza, mientras que un sellado robusto evita la contaminación cruzada.

En una planta de fabricación de baterías, un intercambiador de calor de placas precalienta el aire fresco de 20 °C a 90 °C utilizando aire de escape a 120 °C, lo que reduce la demanda energética del horno en aproximadamente 701 TPM. El aire de escape enfriado se procesa para recuperar 951 TPM de NMP.

¿Cómo funciona el intercambiador de calor aire-aire en el secado de madera?

Un intercambiador de calor aire-aire en el secado de madera transfiere calor entre dos corrientes de aire sin mezclarlas, optimizando la eficiencia energética y controlando las condiciones de secado. Así es como funciona:

  1. Propósito en el secado de maderaEl secado de madera (secado en horno) requiere un control preciso de la temperatura y la humedad para eliminar la humedad de la madera sin causar defectos como grietas o deformaciones. El intercambiador de calor recupera el calor del aire de escape (que sale del horno) y lo transfiere al aire fresco entrante, lo que reduce los costos de energía y mantiene condiciones de secado constantes.
  2. Componentes:
    • Una unidad intercambiadora de calor, generalmente con una serie de placas, tubos o aletas de metal.
    • Dos vías de aire separadas: una para el aire de escape caliente y húmedo del horno y otra para el aire entrante más frío y fresco.
    • Ventiladores o sopladores para mover el aire a través del sistema.
  3. Mecanismo de trabajo:
    • Aire de escapeEl aire caliente y húmedo del horno (p. ej., 50–80 °C) pasa por un lado del intercambiador de calor. Este aire transporta la energía térmica del proceso de secado.
    • Transferencia de calorEl calor del aire de escape se conduce a través de las delgadas paredes metálicas del intercambiador hacia el aire fresco entrante, más frío (p. ej., 20-30 °C), en el otro lado. El metal garantiza una transferencia de calor eficiente sin mezclar las dos corrientes de aire.
    • Calefacción de aire frescoEl aire entrante absorbe el calor, elevando su temperatura antes de entrar al horno. Este aire precalentado reduce la energía necesaria para alcanzar la temperatura de secado deseada.
    • Separación de humedad:El aire de escape, ahora más frío, puede condensar parte de su humedad, que puede drenarse, lo que ayuda a controlar la humedad en el horno.
  4. Tipos de intercambiadores de calor:
    • Intercambiadores de calor de placas:Utiliza placas planas para separar corrientes de aire, ofreciendo alta eficiencia.
    • Intercambiadores de calor tubulares:Utilice tubos para el flujo de aire, duraderos para aplicaciones de alta temperatura.
    • Intercambiadores de tubos de calor:Utilice tuberías selladas con un fluido de trabajo para transferir calor, eficaz para hornos grandes.
  5. Beneficios del secado de madera:
    • Eficiencia energética:Recupera entre 50 y 801 TP3T de calor del aire de escape, lo que reduce los costos de combustible o electricidad.
    • Secado consistente:El aire precalentado mantiene estables las temperaturas del horno, mejorando la calidad de la madera.
    • Impacto ambiental:Reduce el consumo energético y las emisiones.
  6. Desafíos:
    • Mantenimiento:El polvo o la resina de la madera pueden acumularse en las superficies del intercambiador, por lo que es necesaria una limpieza periódica.
    • Costo inicialLa instalación puede ser costosa, aunque se compensa con el ahorro de energía a largo plazo.
    • Control de humedad:El sistema debe equilibrar la recuperación de calor con la eliminación adecuada de la humedad para evitar condiciones excesivamente húmedas.

En resumen, un intercambiador de calor aire-aire en el secado de madera captura el calor del aire de escape para precalentar el aire entrante, mejorando así la eficiencia energética y manteniendo condiciones óptimas de secado. Es un componente fundamental en los sistemas de hornos modernos para el procesamiento sostenible y de alta calidad de la madera.

¿Cómo funciona un intercambiador de calor en una caldera?

A intercambiador de calor en una caldera Transfiere el calor de los gases de combustión al agua que circula por el sistema. A continuación, te explicamos cómo funciona paso a paso:

  1. Se produce la combustiónLa caldera quema una fuente de combustible (como gas natural, petróleo o electricidad), creando gases de combustión calientes.

  2. Transferencia de calor al intercambiador de calorEstos gases calientes fluyen a través de un intercambiador de calor, generalmente un tubo metálico en espiral o con aletas, o una serie de placas de acero, cobre o aluminio.

  3. Circulación de aguaEl agua fría del sistema de calefacción central se bombea a través del intercambiador de calor.

  4. absorción de calorA medida que los gases calientes pasan sobre las superficies del intercambiador de calor, el calor se conduce a través del metal hacia el agua que hay en su interior.

  5. Suministro de agua calienteEl agua ya caliente se hace circular a través de radiadores o hacia grifos de agua caliente, dependiendo del tipo de caldera (combinada o de sistema).

  6. expulsión de gases: The cooled combustion gases are vented out through a flue.

En condensing boilers, there's an extra stage:

  • After the initial heat transfer, the remaining heat in the exhaust gases is used to preheat incoming cold water, extracting even more energy and improving efficiency. This process often creates condensate (water), which is drained from the boiler.

Dispositivo de recuperación de calor para blanquear y desempañar los gases de escape del secado de las fábricas de papel.

Los gases de escape generados por las fábricas de papel durante el proceso de producción se caracterizan por su alta temperatura, alta humedad y mal olor. Si se descargan directamente, no solo contaminan el medio ambiente, sino que también desperdician una gran cantidad de energía térmica. Para solucionar este problema, nuestra empresa ha desarrollado un dispositivo de recuperación de calor para blanquear y desempañar el secado de gases residuales en las fábricas de papel.

Heat recovery device for whitening and defogging exhaust gas from paper mill drying
Principio de funcionamiento:
Principio de intercambio de calor: Utilizando el principio de los intercambiadores de calor de placas, el calor se intercambia a través de una serie de placas metálicas paralelas. Los gases de escape a alta temperatura fluyen por un lado de la placa, mientras que el aire fresco fluye por el otro, transfiriendo calor a través de la pared de la placa para recuperar el calor residual.
Proceso de enfriamiento y calentamiento: En primer lugar, el gas de escape de alta temperatura se enfría a una temperatura cercana a la temperatura ambiente y luego se calienta mediante un recalentador para hacer que la temperatura del gas de escape sea más alta que la temperatura ambiente, eliminando así el fenómeno de la niebla blanca.
Ventajas técnicas:
Eficiente y ahorrador de energía: al recuperar el calor residual de los gases de escape, el consumo de energía y los costos operativos se reducen significativamente.
Protección del medio ambiente y reducción de emisiones: elimina eficazmente la humedad y los componentes olorosos de los gases de escape, reduciendo la contaminación del medio ambiente.
Estructura compacta: tamaño pequeño, peso ligero, fácil instalación y ocupa menos espacio.
Escenarios de aplicación:
Industria del papel: Recuperación de calor durante el proceso de secado del papel para precalentar el aire que ingresa al secador, mejorar la eficiencia del secado y reducir el consumo de combustible.
Industria de procesamiento de alimentos: Reciclaje del calor residual del proceso de secado de granos, verduras, frutas, etc., para precalentar el aire fresco y mejorar la eficiencia del secado.
Industria química: Reciclaje de gases residuales de alta temperatura del proceso de secado de productos químicos para calentar otros gases de proceso o aire.
Industria textil: se utiliza para la recuperación de calor residual durante el proceso de secado de textiles, mejorando la eficiencia del secado y los efectos de ahorro de energía.

¿Necesitar ayuda?
es_CLEspañol de Chile